toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B. url  openurl
  Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
  Year 1997 Publication Environ. Geol. Abbreviated Journal  
  Volume 32 Issue 3 Pages 157-174  
  Keywords (up) mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage  
  Abstract Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.  
  Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10620 Serial 18  
Permanent link to this record
 

 
Author Jarvis, A.P.; Younger, P.L. url  openurl
  Title Passive treatment of ferruginous mine waters using high surface area media Type Journal Article
  Year 2001 Publication Water Res. Abbreviated Journal  
  Volume 35 Issue 15 Pages 3643-3648  
  Keywords (up) mine water treatment passive treatment mine water accretion oxidation iron manganese water treatment  
  Abstract Rapid oxidation and accretion of iron onto high surface area media has been investigated as a potential passive treatment option for ferruginous, net-alkaline minewaters. Two pilot-scale reactors were installed at a site in County Durham, UK. Each 2.0m high cylinder contained different high surface area plastic trickling filter media. Ferruginous minewater was fed downwards over the media at various flow-rates with the objective of establishing the efficiency of iron removal at different loading rates. Residence time of water within the reactors was between 70 and 360s depending on the flow-rate (1 and 12l/min, respectively). Average influent total iron concentration for the duration of these experiments was 1.43mg/l (range 1.08-1.84mg/l; n=16), whilst effluent iron concentrations averaged 0.41mg/l (range 0.20-1.04mg/l; n=15) for Reactor A and 0.38mg/l (range 0.11-0.93mg/l; n=16) for Reactor B. There is a strong correlation between influent iron load and iron removal rate. Even at the highest loading rates (approximately 31.6g/day) 43% and 49% of the total iron load was removed in Reactors A and B, respectively. At low manganese loading rates (approximately 0.50-0.90g/day) over 50% of the manganese was removed in Reactor B. Iron removal rate (g/m3/d) increases linearly with loading rate (g/day) up to 14g/d and the slope of the line indicates that a mean of 85% of the iron is removed. In conclusion, it appears that the oxidation and accretion of ochre on high surface area media may be a promising alternative passive technology to constructed wetlands at certain sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Oct; Passive treatment of ferruginous mine waters using high surface area media; 9; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9698.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9698 Serial 27  
Permanent link to this record
 

 
Author Sapsford, D.; Barnes, A.; Dey, M.; Williams, K.; Jarvis, A.; Younger, P. isbn  openurl
  Title Type Book Whole
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages 261-265  
  Keywords (up) passive treatment iron mine water  
  Abstract This paper presents iron removal data from a novel low footprint mine water treatment system. The paper discusses possible design configurations and demonstrates that the system could treat 1 L/s of mine water containing 8.4 mg/L of iron to < 1 mg/L with a system footprint of 66 m2. A conventional lagoon and aerobic wetland system would require at least 160 m2 to achieve the same treatment. Other advantages of the system are that it produces a clean and dense sludge amenable to on-site storage and possible recycling and that heavy plant will generally not be required for construction.  
  Address  
  Corporate Author Thesis  
  Publisher Mako Edizioni Place of Publication Cagliari Editor Cidu, R.; Frau, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Water in Mining Environments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-88-902955-0-8 Medium  
  Area Expedition Conference  
  Notes Low Footprint Mine Water Treatment: Field Demonstration and Application; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 2 Abb., 2 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17416 Serial 255  
Permanent link to this record
 

 
Author Jarvis, A.P.; Younger, P.L. openurl 
  Title Design, construction and performance of a full-scare compost wetland for mine-spoil drainage treatment at quaking houses Type Journal Article
  Year 1999 Publication Jciwem Abbreviated Journal  
  Volume 13 Issue 5 Pages 313-318  
  Keywords (up) Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) composting constructed wetland design performance assessment United Kingdom EnglandCounty Durham  
  Abstract Acidic spoil-heap drainage, containing elevated concentrations of iron, aluminium and manganese, has been polluting the Stanley Burn in County Durham for nearly two decades. Following the success of a pilot-scale wetland (the first application of its kind in Europe), a full-scale wetland was installed. Waste manures and composts have been used as the main substrate which is contained within embankments constructed from compacted pulverized fuel ash. The constructed wetland, which cost less than £20,000 to build, has consistently reduced iron and aluminium concentrations and has markedly lowered the acidity of the drainage. A third phase of activities at the site aims to identify and eliminate pollutant-release 'hot spots' within the spoil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-7359 ISBN Medium  
  Area Expedition Conference  
  Notes Design, construction and performance of a full-scare compost wetland for mine-spoil drainage treatment at quaking houses; 2227678; United-Kingdom 9; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17546 Serial 339  
Permanent link to this record
 

 
Author Younger, P.L. openurl 
  Title Minewater treatment using wetlands Type Journal Article
  Year 1997 Publication Water and Environment Manager Abbreviated Journal  
  Volume 2 Issue 4 Pages 11  
  Keywords (up) Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) wetlands mine drainage water treatment  
  Abstract Experiences gained by the UK Mining Industry and effluent treatment companies in theuse of wetlands for treating minewaters are discussed. Discharges from abandoned mines is a major cause of freshwater pollution in some regions. Key topics relating to the use of wetlands for minewater treatment will be discussed at a CIWEM conference in Newcastle on 5 September 1997.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Minewater treatment using wetlands; 0283405; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10624 Serial 200  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: