toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author openurl 
  Title World first: Full-scale BioSure plant commissioned Type Journal Article
  Year 2006 Publication Water Wheel Abbreviated Journal  
  Volume 5 Issue 3 Pages 19-21  
  Keywords (down) Waste Management and Pollution Policy geographical abstracts: human geography environmental planning (70 11 5) wastewater waste facility mine waste gold mine sewage treatment  
  Abstract ERWAT's Ancor Wastewater Treatment Works on the Far East Rand commissioned a 10 Ml/day full-scale plant to treat toxic mine-water from the Grootvlei gold mine using primary sewage sludge. The R15-million plant is treating sulphate rich acid mine drainage using the Rhodes BioSURE Process. First, the pumped mine-water is treated at a high-density separation (HDS) plant to remove iron and condition pH levels. Then it is pumped two km via a newly-constructed 10 Ml capacity pipeline to the Ancor works. This mine-water is then mixed together with primary sewage sludge in a mixing tank from where a splitter box directs the material to eight biological sulphate reducing reactors or bioreactors. The overflow water which is rich in sulphide is pumped through the main pump station to another mixing box. Here, iron slurry is mixed with the material before it is again divided between four reactor clarifiers for sulphide removal. The overflow water, now containing reduced sulphate levels and virtually no sulphide is pumped to Ancor's biofilters for removal of remaining Chemical Oxygen Demand (COD) and ammonia following the conventional sewage treatment process for eventual release into the Blesbokspruit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0258-2244 ISBN Medium  
  Area Expedition Conference  
  Notes Trade-; World first: Full-scale BioSure plant commissioned; 2865725; South-Africa; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17495 Serial 494  
Permanent link to this record
 

 
Author Märten, H. openurl 
  Title Neueste Trends zur aktiven Wasserbehandlung und Anwendungsbeispiele Type Journal Article
  Year 2006 Publication Wissenschaftliche Mitteilungen Abbreviated Journal  
  Volume 31 Issue Pages 13-22  
  Keywords (down) Wasserbehandlung AMD Acidic Mine Drainage In-situ-Laugung ISL Tagebaurestsee  
  Abstract Aktuelle Entwicklungen auf dem Gebiet der aktiven Wasserbehandlung im Bergbau in den spezifischen Anwendungsgebieten • Behandlung von sauren Bergbauwässern (AMD – acidic mine drainage) mit Schwerpunkt HDS-Technologie (HDS – high-density sludge) • In-situ-Behandlung bergbaubeeinflusster Grundwasserkörper, insbesondere nach Anwendung der In-situ-Laugung (ISL) • In-situ-Behandlung von Tagebaurestseen mit Schwerpunkt In-lake-Verfahren werden hinsichtlich Machbarkeit, technologischer Kenngrößen und Effizienz bewertet und kommen-tiert. Recent developments in the field of active water treatment technologies in the mining sector are re-viewed. Application areas of interest include • Treatment of acidic mine drainage (AMD) emphasizing HDS technology (HDS – high-density sludge) • In-situ treatment of groundwater affected by mining, in particular after the application of in-situ leaching (ISL) • In-situ treatment of lakes arising in former open-pit lignite mines, in particular the application of in-lake methods The various applications are evaluated with regard to feasibility, technical characteristics and treat-ment efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-1284 ISBN Medium  
  Area Expedition Conference  
  Notes Neueste Trends zur aktiven Wasserbehandlung und Anwendungsbeispiele; 1; FG 'aha' 5 Abb.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17386 Serial 308  
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J. url  openurl
  Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
  Year 2006 Publication Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 12 Pages 2188-2200  
  Keywords (down) Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry  
  Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17248 Serial 44  
Permanent link to this record
 

 
Author Fisher, T.S.R.; Lawrence, G.A. url  openurl
  Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
  Year 2006 Publication Journal of environmental engineering Abbreviated Journal  
  Volume 132 Issue 4 Pages 515-526  
  Keywords (down) Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America  
  Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.  
  Address Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-9372 ISBN Medium  
  Area Expedition Conference  
  Notes Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17494 Serial 72  
Permanent link to this record
 

 
Author Landers, J. openurl 
  Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
  Year 2006 Publication Civil Engineering Abbreviated Journal  
  Volume 76 Issue 7 Pages 30-31  
  Keywords (down) Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America  
  Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7024 ISBN Medium  
  Area Expedition Conference  
  Notes Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17490 Serial 318  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: