toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N. isbn  openurl
  Title Biological treatment of acid mine drainage Type Book Chapter
  Year 1999 Publication Process Metallurgy, vol.9, Part B Abbreviated Journal  
  Volume Issue Pages 559-567  
  Keywords (up) acid mine drainage adsorption alkaline earth metals arsenic Bingham Canyon Mine bioremediation Budelco Zinc Refinery cadmium copper Cornwall England England Europe Great Britain heavy metals iron magnesium manganese metals Netherlands pH phase equilibria pollution remediation sulfate ion United Kingdom United States Utah Western Europe Wheal Jane Mine zinc 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Amils, R.; Ballester, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0444501932 Medium  
  Area Expedition Conference  
  Notes Biological treatment of acid mine drainage; GeoRef; English; 2000-049809; International biohydrometallurgy symposium IBS'99, Madrid, Spain, June 20-23, 1999 References: 11; illus. incl. 5 tables Approved no  
  Call Number CBU @ c.wolke @ 16595 Serial 442  
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D. url  openurl
  Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
  Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal  
  Volume Issue Pages 1545  
  Keywords (up) acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology  
  Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.  
  Address  
  Corporate Author Thesis  
  Publisher AAPG Bulletin Place of Publication 81 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no  
  Call Number CBU @ c.wolke @ 16630 Serial 70  
Permanent link to this record
 

 
Author Sottnik, P.; Sucha, V. openurl 
  Title Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica Type Journal Article
  Year 2001 Publication Mineralia Slovaca Abbreviated Journal  
  Volume 33 Issue 1 Pages 53-60  
  Keywords (up) acid mine drainage aluminum Banska Stiavnica Slovakia Central Europe copper Eh Europe gangue heavy metals iron manganese metals metamorphic rocks oxidation pH pollution precipitation pyrite quartzites reduction remediation Slovakia Sobov Mine sulfides vegetation waste disposal wetlands 22, Environmental geology  
  Abstract A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0369-2086 ISBN Medium  
  Area Expedition Conference  
  Notes Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica; 2004-084366; References: 21; illus. incl. sects. Slovak Republic (SVK); GeoRef; Slovakian Approved no  
  Call Number CBU @ c.wolke @ 16534 Serial 235  
Permanent link to this record
 

 
Author Brooks, R.P.; Unz, R.F.; Davis, L.K.; Tarutis, W.J.; Yanchunas, J. openurl 
  Title Long-term removal and retention of iron and manganese from acidic mine drainage by wetlands Type Journal Article
  Year 1990 Publication Abbreviated Journal  
  Volume Issue Pages 147  
  Keywords (up) Acid mine drainage Wetlands Biological treatment Iron removal Manganese removal  
  Abstract A promising low-technology solution for treating acidic mine drainage (AMD) emanating from coal mined lands involves the use of constructed wetlands.^The research was directed at addressing questions about retention mechanisms for the long-term storage of iron and manganese in constructed wetlands dominated by broad-leaved cattails (Typha latifolia).^Three sites in central Pennsylvania spanning the range of water chemistry parameters found in AMD were investigated.^When the AMD was circumneutral, and metal loadings were low, 79% of the iron, and 48% of the manganese were retained on average.^In the highly acidic site (pH approx.^= 3), < 10% of the metal loadings were retained.^The primary retention mechanism appears to be the formation of metal oxides in the aerobic zones of the sediments.^Although most microbial isolates extracted from sediment cores originated in the aerobic portions of the sediments, there was no evidence that they were transforming metals.^When AMD is circumneutral and metal loadings are low, constructed wetlands can be an effective approach to treating mine drainage.^At sites with highly acidic waters and high metal loadings, the use of constructed wetlands to treat AMD may be ineffectual, and should be implemented with caution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Long-term removal and retention of iron and manganese from acidic mine drainage by wetlands; Springfield, Va. : NTIS; Opac Approved no  
  Call Number CBU @ c.wolke @ 7082 Serial 435  
Permanent link to this record
 

 
Author Stewart, B.R. openurl 
  Title The influence of fly ash additions on acid mine drainage production from coarse coal refuse Type Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) acid mine drainage; acidic composition; alkalic composition; alkalinity; ash; coal; controls; copper; diffusion; dissolved materials; experimental studies; geologic hazards; hydraulic conductivity; iron; leachate; leaching; manganese; metals; organic residues; oxidation; oxygen; pH; pollutants; pollution; sedimentary rocks; soil treatment; soils; sorption; sulfate ion; waste disposal; water quality 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The influence of fly ash additions on acid mine drainage production from coarse coal refuse; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6351 Serial 230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: