toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benkovics, I.; Csicsák, J.; Csövári, M.; Lendvai, Z.; Molnár, J. openurl 
  Title Mine Water Treatment – Anion-exchange and Membrane Process Type Journal Article
  Year 1997 Publication Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal  
  Volume 1 Issue Pages 149-157  
  Keywords (down) uranium mining Hungary Mecsek Ore Mining Company waste water mine water chemistry nano-filtration reverse osmosis pilot plant mine water treatment treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mine Water Treatment – Anion-exchange and Membrane Process; 1; FG 6 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9530 Serial 455  
Permanent link to this record
 

 
Author Nakazawa, H. url  openurl
  Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
  Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal  
  Volume Issue Pages 373-381  
  Keywords (down) mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production  
  Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-87339-642-1 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17456 Serial 151  
Permanent link to this record
 

 
Author Botha, G.R.; Sanderson, R.D.; Buckley, C.A. openurl 
  Title Brief Historical Review of Membrane-development and Membrane Applications in Waste-water Treatment in Southern Africa Type Journal Article
  Year 1992 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 25 Issue 10 Pages 1-4  
  Keywords (down) membranes reverse osmosis ultrafiltration microfiltration desalination waste-water treatment industrial effluents  
  Abstract Away back in 1953 few people in the world, let alone South Africa, knew or had heard about membrane desalination, but there was an increasing awareness that electrodialysis had considerable potential for the desalination of brackish water.In South Africa the development of the new gold fields in the northern Orange Free State and the problems posed by the presence of excessive volumes of very saline mine waters stimulated interest in desalination and the CSIR* in collaboration with the mining industry became involved in the development of the electrodialysis process. By 1959 the largest brackish desalination plant in the world had been built and commissioned. South Africans were thus in the forefront of this technology, even to the extent of making the required membranes locally.Our historical review of membrane development and the applications of membrane technology in Southern Africa encompasses both pressure- and voltage-driven processes. Examples of the pressure processes are microfiltration, ultrafiltration and charged membrane ultrafiltration or nanofiltration, and finally reverse osmosis with fixed and dynamically formed membranes. The voltage-drive processes considered are electrodialysis and electrodialysis reversal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223 ISBN Medium  
  Area Expedition Conference  
  Notes Brief Historical Review of Membrane-development and Membrane Applications in Waste-water Treatment in Southern Africa; Isi:A1992kc89700002; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17314 Serial 441  
Permanent link to this record
 

 
Author Janiak, H. openurl 
  Title Mine drainage treatment in Polish lignite mining Type Journal Article
  Year 1992 Publication Mine Water Env. Abbreviated Journal  
  Volume 11 Issue 1 Pages 35-44  
  Keywords (down) laboratory scale tests plants bogs biological filters open cut mining mine drainage filtration flocculation radiation particle size suspended solids water treatment water discharge field tests lignite mines poland mining and industrial water water treatment water quality  
  Abstract The paper presents volumes and characteristics of water discharged from some Polish lignite open pit mines and discusses methods for its treatment. Results of research work concerned with increase in mine drainage efficiency by using processes of radiation, flocculation and filtration through a set of bog plants, iknown as grass filter are also discussed  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment in Polish lignite mining; WATERLIT: 00526053 1 Abb., 3 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17356 Serial 342  
Permanent link to this record
 

 
Author Turek, M.; Gonet, M. url  openurl
  Title Nanofiltration in the utilization of coal-mine brines Type Journal Article
  Year 1997 Publication Desalination Abbreviated Journal  
  Volume 108 Issue 1-3 Pages 171-177  
  Keywords (down) Entsalzung Entsalzungsanlage Umkehrosmose Membran Kohlenbergwerk Natriumchlorid Abwasser Verdampfung Energieverbrauch Nanofiltration mine water treatment  
  Abstract The utilization of saline coal mine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland. In the case of most concentrated waters, the so-called coalmine brines, the method of concentrating by evaporation in a twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. A considerable restriction in the utilization of coal mine brines is the high energy consumption in these methods of evaporation. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulfate ions in the coal mine brines. The present paper deals with the application of nanofiltration in the pretreatment of the brine. The application of nanofiltration membranes with an adequate pore size, including charged membranes, makes it possible to decrease the concentration of divalent ions in the permeate practically without any changes in the concentration of sodium chloride. Then the permeate may be concentrated in a multi-stage evaporation process, e.g. MSF, without any risk of the crystallization of gypsum. A combination of NF and MSF ought to set down the unit costs of the concentration of coal mine brines below those of mere evaporation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference  
  Notes Feb; Nanofiltration in the utilization of coal-mine brines; Wos:A1997wk45600023; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/8724.pdf; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8724 Serial 29  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: