|   | 
Details
   web
Records
Author Sanders, F.; Rahe, J.; Pastor, D.; Anderson, R.
Title Wetlands treat mine runoff Type Journal Article
Year 1999 Publication Civil Engineering Abbreviated Journal
Volume 69 Issue 1 Pages 53-55
Keywords (down) Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage constructed wetland heavy metal remediation United States Montana Blackfoot River
Abstract In the late 1890s, silver, lead and zinc deposits were discovered along the headwaters of the Blackfoot River, northeast of Missoula, Mont. Settlers began mining the metals in earnest, and eventually the mines became known as the Upper Blackfoot Mining Complex (UBMC). Many of the mines were operated long enough to supply metals for World War II weaponry, but after the war the mines were abandoned, and by the 1960s, their orange-tainted runoff began to concern both passersby and state officials. In 1991, the state contacted the current owners of several of those mines-including the Mike Horse and the Anaconda-to negotiate a voluntary cleanup. The American Smelting and Refining Co. (ASARCO) and the Atlantic Richfield Co. (ARCO) agreed to remediate the sites' metal-enriched, moderately to severely acidic drainage, which was discharging into the upper Blackfoot River. As part of effort to reclaim the Mike Horse and Anaconda mines, engineers with McCulley, Frick and Gilman Inc. (MFG), Boulder, Colo., developed an integrated, passive wetland treatment system that will take several years to reach full treatment capacity in the high-elevation environment, but will last for decades. (Constructed and restored wetlands have also been part of the remediation of other UBMC mines, such as the Carbonate and Paymaster mines.) The Mike Horse and Anaconda system, designed to meet National Pollutant Discharge Elimination Systems (NPDES) restrictions, concentrates primarily on zinc and iron and, to a lesser extent, on copper, lead and other metals.
Address F. Sanders, McCulley, Frick and Gilman Inc., Boulder, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7024 ISBN Medium
Area Expedition Conference
Notes Wetlands treat mine runoff; 0411276; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17551 Serial 256
Permanent link to this record
 

 
Author Amacher, M.C.; Brown, R.W.; Kotuby-Amacher, J.; Willis, A.
Title Adding sodium hydroxide to study metal removal in a stream affected by acid mine drainage Type Journal Article
Year 1993 Publication Research Paper, US Department of Agriculture, Forest Service Abbreviated Journal
Volume 465 Issue 17 Pages
Keywords (down) pH stream mine drainage remediation zinc copper sodium hydroxide USa Montana Beartooth Mountains Fisher Creek 3 Geology
Abstract Fisher Creek, a stream affected by acid mine drainage in the Beartooth Mountains of Montana, was studied to determine the extent to which copper (Cu) and zinc (Zn) would be removed from stream water when pH was increased by a pulse of sodium hydroxide (NaOH). Although the pH adjustment study indicated that precipitated Fe(OH) “SUB 3” (am) could rapidly remove Cu and Zn from a stream affected by acid mine drainage, the pH should be maintained in an optimal range (7 to 8.5) to maximize removal by adsorption. -from Authors
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Adding sodium hydroxide to study metal removal in a stream affected by acid mine drainage; (1022908); 94k-02459; Using Smart Source Parsing INT- pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17566 Serial 484
Permanent link to this record
 

 
Author Ballard, J.J.
Title Parametric study for metal ion removal from acid mine water using Rhizopus javanicus Type Book Whole
Year 1995 Publication Abbreviated Journal
Volume Issue Pages
Keywords (down) Mine water Purification Montana Metal wastes Biodegradation Bioremediation Montana Butte Berkeley Pit
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher The University of Montana, Montana Tech Place of Publication Montana Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Parametric study for metal ion removal from acid mine water using Rhizopus javanicus; Opac Approved no
Call Number CBU @ c.wolke @ 7217 Serial 469
Permanent link to this record
 

 
Author Bloom, N.S.; Preus, E.; Kilner, P.I.; von der Geest, E.; Hensman, C.E.
Title Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords (down) acid mine drainage; Berkeley Pit; Butte Montana; decontamination; geochemistry; hydrochemistry; industrial waste; metals; mineral composition; Montana; pollution; Silver Bow County Montana; soils; sulfates; surface water; toxic materials; trace metals; United States; waste disposal; water treatment 22 Environmental geology; 02A General geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046176; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5625 Serial 445
Permanent link to this record
 

 
Author Kingham, N.W.; Semenak, R.; Powell, G.; Way, S.
Title Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords (down) acid mine drainage; Basin-Luttrell Pit; cost; environmental effects; leachate; Lewis and Clark County Montana; metals; Montana; osmosis; pollutants; pollution; precipitation; reverse osmosis; soils; sulfates; tailings; Ten Mile Creek; United States; waste rock; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046128; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5610 Serial 331
Permanent link to this record