|   | 
Details
   web
Records
Author Davison, W.
Title Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities Type Journal Article
Year 1988 Publication Water Res Abbreviated Journal
Volume 22 Issue (down) 5 Pages 577-583
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities; Wos:A1988p420900008; Times Cited: 8; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9085 Serial 90
Permanent link to this record
 

 
Author Sato, D.; Tazaki, K.
Title Calcification treatment of mine drainage and depositional formula of heavy metals Type Journal Article
Year 2000 Publication Chikyu Kagaku = Earth Science Abbreviated Journal
Volume 54 Issue (down) 5 Pages 328-336
Keywords acid mine drainage Asia calcification deposition ettringite Far East heavy metals Ishikawa Japan Japan lime Ogoya Mine pollution sulfates waste water water treatment 22, Environmental geology
Abstract Depositional formula of heavy metals after disposal of the mine drainage from the Ogoya Mine in Ishikawa Prefecture, Japan, was mineralogically investigated. Strong acidic wastewater (pH 3.5) from pithead of the mine contains high concentration of heavy metals. In this mine, neutralizing coagulation treatment is going on by slaked lime (calcium hydroxides: Ca(OH) (sub 2) ). Core samples were collected at disposal pond to which the treated wastewater flows. The core samples were divided into 44 layers based on the color variation. The mineralogical and chemical compositions of each layer were analyzed by an X-ray powder diffractometer (XRD), an energy dispersive X-ray fluorescence analyzer (ED-XRF) and a NCS elemental analyzer. The upper parts are rich in brown colored layers, whereas discolored are the deeper parts. The color variation is relevant to Fe concentration. Brown colored core sections are composed of abundant hydrous ferric oxides with heavy metals, such as Cu, Zn, and Cd. On the other hand, S concentration gradually increases with depth. XRD data indicated that calcite decreases with increasing depth, and ettringite is produced at the deeper parts. Cd concentration shows similar vertical profile to those of calcite and ettringite. The results revealed that hydrous ferric oxides, calcite and ettringite are formed on deposition, whereby incorporating the heavy metals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0366-6611 ISBN Medium
Area Expedition Conference
Notes Calcification treatment of mine drainage and depositional formula of heavy metals; 2001-032610; References: 19; illus. incl. 1 table, sketch map Japan (JPN); GeoRef; Japanese Approved no
Call Number CBU @ c.wolke @ 16543 Serial 252
Permanent link to this record
 

 
Author Oster, A.
Title Relocating the Inde river – Post-mining design of a river meadow landscape. Verlegung des Flusses Inde – Bergbauliche Gestaltung einer Flussauenlandschaft Type Journal Article
Year 2005 Publication World of Mining Surface & Underground Abbreviated Journal
Volume 57 Issue (down) 5 Pages 346-351
Keywords Fluss=Gewässer Verlegen Braunkohlenbergbau Tagebau Ökologie Umweltschutz Landschaftsgestaltung Wasserbau Flutung Deutschland Flussverlegung Wiedernutzbarmachung
Abstract Vor dem Hintergrund einer planmäßigen Tagebauentwicklung muss der das Gewinnungsfeld in Nord-Süd-Richtung durchquerende Fluss Inde Ende 2005 bergbaulich in Anspruch genommen werden. Als Ersatz wurde auf Grundlage des Planfeststellungsbeschlusses vom 10.09.1998 eine neue Inde auf einer Länge von rd. 12 km erstellt. Rund 10 km der neuen Inde liegt innerhalb des Tagebaufeldes. Hierzu musste eine Flusslandschaft angelegt werden. Im Gegensatz bisher anthropogen geprägten Inde, ist eine naturnahe und weiträumige Flusslandschaft vorgesehen. Die Gestaltung soll, in Verbindung mit den zahlreichen eingebrachten Landschaftselementen wie Flutmulden, Altarmansätzen und Kolke, eine artenreiche und ökologisch hochwertige Auenlandschaft ermöglichen. Die Flutung der neuen Inde erfolgt auf Grundlage eines dreiphasigen Gewässerumschlusskonzeptes. Im Anschluss an die Flutung soll ein Monitoring- Programm zur Dokumentation der hydrodynamischen, morphologischen und landschaftsökologischen Entwicklung der Indeflur durchgeführt werden. Against the background of the scheduled eastward development of the Inden opencast mine, the Inde river which runs there must make way for mining operations at the end of 2005. Prior to this, as a replacement for the riverbed, which is some 4.5 km long, a riverscape has had to be created as a bypass in the west, mainly within the scope of rehabilitation measures. The model built for this purpose based on historical records provides for a close-to-nature and spacious riverscape with hand- and soft-wood meadows, unlike the anthropogenically marked Inde of today, with a meandering mean water bed. This design, in conjunction with the many installed landscape elements, like flood hollows, creeks and potholes, aims at creating a diverse and ecologically high-quality meadow landscape. The main factors impacting the river's route were the opencast mine's geometry and progress, as well as the planned and existing utilization of the land surfaces outside the opencast field. Besides these constraints, there were stipulated vertical points due to hydraulic requirements. The Inde plains, taking account of the planned route, were created on the basis of a design template, which provides for a stable level, a sealing layer and a cultivatable meadow substrate layer. In addition, the meadow substrate layer protects the sealing layer from erosion thanks to its medium- and coarse-grained gravel content. The Inde was constructed in the opencast field within the scope of rehabilitation in spreader operations, meaning that it was possible to dump the material to be installed in line with the design template and given elevations. The flooding of the 'new' Inde was based on a three-phase waterway rerouting concept and provided for increasing discharge quantities. This enabled a bottom covering layer to be formed successively, and ailowed the aquatic fauna to gently adapt to the changed living conditions and further seed material to be flushed in.
Address Inden Opencast Mine, RWE Power, Eschweiler, DE
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-2408 ISBN Medium
Area Expedition Conference
Notes Relocating the Inde river – Post-mining design of a river meadow landscape. Verlegung des Flusses Inde – Bergbauliche Gestaltung einer Flussauenlandschaft; 36448, BERG , 19.12.05; Words: 652; 200511 07020; 6 Seiten, 13 Bilder, 5 Quellen 3UX *Umweltbelastung, technik* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17581 Serial 275
Permanent link to this record
 

 
Author Okuda, T.; Ema, S.; Ishizaki, C.; Fujimoto, J.
Title Mine drainage treatment and ferrite sludge application Type Journal Article
Year 1991 Publication NEC Technical Journal Abbreviated Journal
Volume 44 Issue (down) 5 Pages 4-16
Keywords ferrite applications mining water treatment mine drainage treatment waste water treatment ions metal recovery catalysts environmental problems solution ferrite sludge application iron oxidation bacteria ferrite formation process mine drainage Matsuo Mine magnetic marking materials magnetic fluid metal separation semiactive magnetic damper batteries fish gathering cement tracer Electrical and Electronic Engineering Manufacturing and Production
Abstract The `ferrite process' is an excellent method for treating waste water containing iron and arsenic, but cannot be directly applied to mine drainage where silicon and aluminum ions are present, because they strongly inhibit ferrite formation. As a result of the development of related technologies such as the elimination of silicon, the concentration of iron, and the oxidation of ferrous ions using iron-oxidation bacteria, a new ferrite formation process has been developed and applied to the mine drainage of the Matsuo Mine. The paper discusses the application of the ferrite sludge to magnetic marking materials, magnetic fluid for metal separation and recovery, and the semiactive magnetic damper is described. The related technologies which will be expected to play an important role in solving the environmental problems are also described. These technologies will change the ferrite sludge to beneficial materials, which can be used for carbon dioxide decomposing catalysts, reuse of dry batteries, fish gathering blocks, and cement tracer for ground improvement
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0285-4139 ISBN Medium
Area Expedition Conference
Notes Mine drainage treatment and ferrite sludge application; 3991072; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16787 Serial 279
Permanent link to this record
 

 
Author Morfitt, B.; Brewer, W.; Frobel, R.
Title Cleaning up the Summitville Mine Superfund Site Type Journal Article
Year 1998 Publication Geotechnical Fabrics Report Abbreviated Journal
Volume 16 Issue (down) 5 Pages 38-41
Keywords Geomembran Verbundstoff Abdichten Erdaufschüttung Erosion Schutz Bentonit Bergwerk Netz
Abstract A multi-layered geosynthetic system that includes geosynthetic-clay liners (GCL) and a geonet-composite drain (GNGC) is being used to cap and stabilize a 178000 m(exp 2) heap-leach pad at the Summitville Mine Superfund Site in Colorado. Selected were materials on the basis of design requirements for permeability, strength, extreme site conditions and cost. The Summitville cleanup called for a heap-leach pad cap to provide a barrier that would prevent precipitation from infiltrating the pad material. This long-term remediation prevents the pile from becoming saturated and allowing water to overflow the downslope dike, which could cause instability to dike and pond. Three geosynthetic alternatives were proposed. The contractor, that was awarded the heap leach pad, phase 2 contract, decided for a geosynthetic clay liner cap placed directly on the redesigned slopes. Bentofix NW-8 was used as GCL and TexNet TN was selected as the geocomposite drain. Conformance testing, subgrade preparation review, geosynthetic installation/repair inspection and review of cover material placement, performed by independent construction-quality assurance, showed that GCL is a well-suited cap material for heap leach pads, where high wind, cold temperatures rain and high altitude hinder construction. The robust geosynthetic allowed on-site coarse material to be used in the subgrade and cover layer, which saved the cost of importing more expensive bedding material.
Address US Bureau of Reclamation, Denver, US; Advanced Terra Testing, Lakewood, US; R K Frobel & Associates, Lakewood, US
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0882-4983 ISBN Medium
Area Expedition Conference
Notes Cleaning up the Summitville Mine Superfund Site; 16974, BERG , 16.09.98; Words: 376; T9808 0249 178; 4 Seiten, 4 Bilder, 1 Tabelle 3TMP *intelligente Textilien, technische Textilien*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17599 Serial 294
Permanent link to this record