toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Simmons, J.A.; Andrew, T.; Arnold, A.; Bee, N.; Bennett, J.; Grundman, M.; Johnson, K.; Shepherd, R. openurl 
  Title Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams Type Journal Article
  Year 2006 Publication Mine Water Env. Abbreviated Journal  
  Volume 25 Issue (up) 4 Pages 241-245  
  Keywords acid mine drainage aluminum calcium limestone sand sediment stream liming West Virginia  
  Abstract In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams; 1; FG 4 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17420 Serial 248  
Permanent link to this record
 

 
Author Potgieter-Vermaak, S.S.; Potgieter, J.H.; Monama, P.; Van Grieken, R. url  openurl
  Title Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage Type Journal Article
  Year 2006 Publication Minerals Engineering Abbreviated Journal  
  Volume 19 Issue (up) 5 Pages 454-462  
  Keywords Acid rock drainage Mining Tailings Environmental  
  Abstract The physical, chemical and biological nature of Vaal Dam water, the main source of water in Gauteng, South Africa, is often affected by underground water pollution (acid mine water) and industrial effluents. The ecological significance and detrimental effects necessitate investigations into treating the water prior to discharge into public streams. Although several acid mine water treatment techniques and methods exist, they all have certain disadvantages. Lime treatment is the most common approach. In this investigation, limestone, dolomite and fly ash were selected as pre-treatment agents based on their low cost. Simulated acid mine water containing these agents was tested using a Jar Test apparatus. Samples were analyzed before and after treatment for pH, ferrous, ferric, calcium, magnesium and sulphate ions. The study demonstrated that the quality of the water improved with an increase in the amount and surface area of the raw material dosed and an increase in contact time. It was also influenced by the chemical composition of the acid mine water and aeration. Chemical cost savings of 38% are achieved when lime is replaced with limestone, and cost savings of 23% and 48% can be accomplished when limestone is substituted with dolomite and fly ash respectively. This could result in significant savings to the gold and coal mining industries, and could lead to a mutual benefit/gain between industrialists/polluters and the public.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes Apr.; Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17461 Serial 42  
Permanent link to this record
 

 
Author Wiessner, A.; Kuschk, P.; Buddhawong, S.; Stottmeister, U.; Mattusch, J.; Kästner, M. openurl 
  Title Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions Type Journal Article
  Year 2006 Publication Engineering in Life Sciences Abbreviated Journal  
  Volume 6 Issue (up) 6 Pages 584-592  
  Keywords Grubenentwässerung biologische-Abwasserreinigung Pflanze Zink Eisen Schwermetallentfernung Nassverfahren Grundwasserströmung Langzeitversuch Regen Prozesswirkungsgrad Reaktionsgeschwindigkeit Binsen Hydrokultur  
  Abstract A system of planted and implanted small-scale SSF (subsurface flow) and SF (surface flow) constructed wetlands together with HP (hydroponic systems) were installed to compare the removal efficiencies of Fe and Zn from AMD (acid mine drainage) under long-term field conditions. Maximum removal of 94 % – 97 % (116 mg/m(exp 2)/d – 142 mg/m(exp 2)/d) for Fe and 69 % – 77 % (6.2 mg/m(exp 2)/d – 7.9 mg/m(exp 2)/d) for Zn was calculated for the planted soil systems. The planted SSF was most sensitive to heavy rain fall. Short-term increases of the metal concentration in the outflows, short-term breakdowns of the Fe removal and continual long-term breakdowns of the Zn removal were observed. In contrast to Zn removal, all wetland types are applicable for Fe removal with maximum removal in the range of 60 % – 98 %. Most of the removed Fe and Zn was transformed and deposited inside the soil bed. The amount absorbed by the plants (0.03 % to 0.3 %) and gravel-associated soil beds (0.03 % to 1.7 %) of the total input were low for both metals. The response of the planted SSF to rainfall suggests a remobilisation of metals accumulated inside the rhizosphere and the importance of buffering effects of the surface water layers of SF systems. The importance of plants for metal removal was shown.  
  Address UFZ – Umweltforschungszentrum Leipzig-Halle, DE; King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, TH  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-0240 ISBN Medium  
  Area Expedition Conference  
  Notes Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions; 39931, BERG , 08.01.07; Words: 506; 200612 02721; 9 Seiten, 7 Bilder, 3 Tabellen, 36 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3PZI *biologischer Abbau und Bioremediation*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no  
  Call Number CBU @ c.wolke @ 17578 Serial 211  
Permanent link to this record
 

 
Author Curi, A.C.; Granda, W.J.V.; Lima, H.M.; Sousa, W.T. openurl 
  Title Zeolites and their application in the decontamination of mine waste water Type Journal Article
  Year 2006 Publication Informacion Tecnologica Abbreviated Journal  
  Volume 17 Issue (up) 6 Pages 111-118  
  Keywords adsorption decontamination effluents industrial waste ion exchange metallurgical industries metallurgy mining mining industry porosity wastewater treatment zeolites zeolites decontamination mine waste water genesis porosity adsorption ionic exchange mineral metallurgical effluents mercury pollution artisan mining activities heavy metals removal metal mining effluents mercury vapors ovens fire amalgams Manufacturing and Production  
  Abstract This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0716-8756 ISBN Medium  
  Area Expedition Conference  
  Notes Zeolites and their application in the decontamination of mine waste water; 9532002; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16784 Serial 409  
Permanent link to this record
 

 
Author Landers, J. openurl 
  Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
  Year 2006 Publication Civil Engineering Abbreviated Journal  
  Volume 76 Issue (up) 7 Pages 30-31  
  Keywords Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America  
  Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7024 ISBN Medium  
  Area Expedition Conference  
  Notes Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17490 Serial 318  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: