|   | 
Details
   web
Records
Author Skousen, J.; Jenkins, M.
Title Acid mine drainage treatment costs with calcium oxide and the Aquafix machine Type Journal Article
Year 2001 Publication Green Lands Abbreviated Journal
Volume 31 Issue (down) 3 Pages 46-51
Keywords acid mine drainage; chemical composition; Clay County West Virginia; coal mines; cost; decontamination; ground water; instruments; lime; Mary Ruth Mines; mines; pollution; Preston County West Virginia; remediation; sludge; surface water; techniques; United States; water pollution; water treatment; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-0110 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage treatment costs with calcium oxide and the Aquafix machine; 2002-045348; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5759 Serial 246
Permanent link to this record
 

 
Author Perry, A.; Kleinmann, R.L.P.
Title The use of constructed wetlands in the treatment of acid mine drainage Type Journal Article
Year 1991 Publication Natural Resources Forum Abbreviated Journal
Volume 15 Issue (down) 3 Pages 178-184
Keywords quality standard water treatment constructed wetland pond system acid mine drainage USA 1 Geography
Abstract US government regulations require that all effluents from industrial operations, including mining, meet certain water quality standards. Constructed wetlands have proven to be useful in helping to attain those standards. Application of this biotechnology to mine water drainage can reduce water treatment costs and improve water quality in streams and rivers adversely affected by acidic mine water drainage from abandoned mines. Over 400 constructed wetland water treatment systems have been built on mined lands largely as a result of research by the US Bureau of Mines. Wetlands are passive biological treatment systems that are relatively inexpensive to construct and require minimal maintenance. Chemical treatment costs are reduced sufficiently to repay the cost of construction in less than a year. The mine waste water is typically treated in a series of excavated ponds that resemble small marsh areas. The ponds are engineered to facilitate bacterial oxidation of iron. Ideally, the water then flows through a composted organic substrate supporting a population of sulphate-reducing bacteria which raises the pH. Constructed wetlands in the US are described – their history, functions, construction methodologies, applicabilities, limitations and costs. -Authors
Address US Department of the Interior, Bureau of Mines, 2401 E Street, NW Washington, DC 20241, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The use of constructed wetlands in the treatment of acid mine drainage; (0895945); 92h-01979; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17569 Serial 272
Permanent link to this record
 

 
Author Norton, P.J.
Title The Control of Acid Mine Drainage with Wetlands Type Journal Article
Year 1992 Publication Mine Water Env. Abbreviated Journal
Volume 11 Issue (down) 3 Pages 27-34
Keywords acid mine drainage construction chemistry artificial wetlands pollution control performance evaluation coal mines pollution control and prevention
Abstract The recent increases in environmental legislation, especially in the USA'have meant that there is a need on behalf of the mining companies for more judicious operational planning and more thorough restoration techniques in order to reduce costs and prevent violation of the smctly enforced regulations. Water pollution is probably the greatest problem and many less enlightened operators, especially for example, in surface coal milling in Pennsylvania, have been forced into liquidation after having been unable to meet the severe restrictions on Acid Mine Drainage (AMD). The problems of AMD are also inherent in most forms of metalliferous and coal mining and also in some types of aggregate quarrying. As excavations go deeper in search of ever diminishing reserves then they are more likely to encounter groundwater which can become polluted if insufficient care is not taken. It is to be expected that the laws will also become more severe than they are at present in Europe and methods of treatment of AMD will need to be developed that are more efficient than the costly chemical methods currently used. Research by the author and others into the source of AMD pollution and its treatment with engineered wetlands and other operational methods are discussed in the paper. The methods have- the distinct benefit that they are cheap to install, are cost effective over a long period with the minimum of supervision and are environmentally acceptable to the planning and regulatory authorities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Control of Acid Mine Drainage with Wetlands; 1; 1 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17401 Serial 284
Permanent link to this record
 

 
Author Mohan, D.; Chander, S.
Title Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent Type Journal Article
Year 2006 Publication J. Hazard. Mater. Abbreviated Journal
Volume 137 Issue (down) 3 Pages 1545-1553
Keywords Geobase: Related Topics geobase: related topics (901) acid mine drainage adsorption ion iron sulfide lignite wastewater water treatment
Abstract Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns. < copyright > 2006 Elsevier B.V. All rights reserved.
Address D. Mohan, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States dm_1967@hotmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Medium
Area Expedition Conference
Notes Oct 11; Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent; 2919875; Netherlands 56; Geobase Approved no
Call Number CBU @ c.wolke @ 17634 Serial 295
Permanent link to this record
 

 
Author Michaud, L.H.
Title Recent technology related to the treatment of acid drainage Type Journal Article
Year 1994 Publication Earth and Mineral Sciences Abbreviated Journal
Volume 63 Issue (down) 3 Pages 53-55
Keywords acid mine drainage coal mine remediation passive treatment 3 Geology
Abstract The generation of acid mine drainage is a serious environmental problem associated with coal mining. The chemistry of acid mine drainage is outlined. The prevention and minimization of acid mine drainage formation is examined. The in situ inhibition and remediation of acid mine drainage is described. Methods for the passive treatment of acid mine drainage after formation are discussed. The design of treatment systems is considered. -P.M.Taylor
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recent technology related to the treatment of acid drainage; (1131431); 95k-15099; Using Smart Source Parsing 95. pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17562 Serial 300
Permanent link to this record