|   | 
Details
   web
Records
Author Fripp, J.; Ziemkiewicz, P.F.; Charkavorki, H.
Title Acid Mine Drainage Treatment Type Journal Article
Year 2000 Publication Ecosystem Management and Restoration Research Program Technical Notes Abbreviated Journal
Volume Erdc Tn-Emrrp-Sr-14 Issue (up) Pages 7
Keywords AMD treatment sampling
Abstract Contaminated water flowing from abandoned coal mines is one of the most significant contributors to water pollution in former and current coal-producing areas. Acid mine drainage (AMD) can have severe impacts to aquatic resources, can stunt terrestrial plant growth and harm wetlands, contaminate groundwater, raise water treatment costs, and damage concrete and metal structures. In the Appalachian Mountains of the eastern United States alone, more than 7,500 miles of streams are impacted. The Pennsylvania Fish and Boat Commission estimates that the economic losses on fisheries and recreational uses are approximately $67 million annually (ref). While most modern coal-mining operations (Figure 1) must meet strict environmental regulations concerning mining techniques and treatment practices, there are thousands of abandoned mine sites in the United States (Figure 2). Treatment of a single site can result in the restoration of several miles of impacted streams. The purpose of this document is to briefly summarize key issues related to AMD treatment. This document is intended as a brief overview; thus, it is neither inclusive nor exhaustive. The technical note presents the preliminary planning issues
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage Treatment; 2; als Datei vorhanden 5 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17344 Serial 374
Permanent link to this record
 

 
Author Dillard, G.
Title A win-win way to clean up by changing ionic state, new process can precipitate heavy metals Type Journal Article
Year 2000 Publication Pay Dirt Abbreviated Journal
Volume 734 Issue (up) Pages 10-11
Keywords acid mine drainage; California; chemical composition; companies; environmental analysis; environmental management; heavy metals; ion exchange; ions; metal ores; metals; mining; pollutants; pollution; precipitation; processes; remediation; soils; surface water; United States; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A win-win way to clean up by changing ionic state, new process can precipitate heavy metals; 2004-029026; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5822 Serial 401
Permanent link to this record
 

 
Author Brunet, J.-F.
Title Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art Type Journal Article
Year 2000 Publication Principaux Resultats Scientifiques – Bureau de Recherches Geologiques et Minieres Abbreviated Journal
Volume 1999/2000 Issue (up) Pages 97-98
Keywords acid mine drainage; cost; decontamination; dissolved materials; efficiency; metals; pollutants; pollution; regulations; remediation; sulfides; technology; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0766-7175 ISBN Medium
Area Expedition Conference
Notes Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art; 2002-059955; France (FRA); GeoRef; French; English Approved no
Call Number CBU @ c.wolke @ 5888 Serial 429
Permanent link to this record
 

 
Author Smit, J.P.; Pretorius, L.E.
Title The treatment of polluted mine water Type Journal Article
Year 2000 Publication J. Afr. Earth Sci. Abbreviated Journal
Volume 31 Issue (up) 1 Pages 72
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1464-343x ISBN Medium
Area Expedition Conference
Notes The treatment of polluted mine water; 1574235052; UB Bayreuth <703> TU Berlin <83> UB Bochum <294> UB Frankfurt/Main <30> TU Freiberg <105> SUB Goettingen <7> TIB/UB Hannover <89> UB Karlsruhe <90> BSB München <12>; OLC-SSG Geowissenschaften – Online Contents-Sondersammelgebiete Approved no
Call Number CBU @ c.wolke @ 16424 Serial 238
Permanent link to this record
 

 
Author Mustikkamaki, U.-P.
Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal
Volume 58 Issue (up) 1 Pages 44-47
Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology
Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-9317 ISBN Medium
Area Expedition Conference
Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no
Call Number CBU @ c.wolke @ 16560 Serial 291
Permanent link to this record