|   | 
Details
   web
Records
Author Smith, I.J.H.
Title AMD treatment, it works but are we using the right equipment? Type Journal Article
Year 2000 Publication Tailings and mine waste ' Abbreviated Journal
Volume Issue (down) Pages 419-427
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage conference proceedings methodology mine drainage remediation waste management
Abstract For the past 40 years various approaches have been developed to treat acid waters coming from abandoned as well as operating mining operations. System designs have evolved to meet increasingly stringent discharge permit limits for treated water, as well as to provide solid disposal within economic constraints. A treatment system for remediation of acid mine drainage (AMD) or acid groundwater (AG) requires two main steps: 1. The addition of chemicals to precipitate dissolved metals contained in the waters, and if necessary, to coagulate the precipitated solids ahead of physical separation. 2. Physical separation of the precipitated solids from the water so the water can be lawfully discharged from the site. Choosing the appropriate technology and equipment results in the most efficient plant design, the lowest capital outlay, and minimum operating cost. The goal of these plants is to discharge liquids and solids able to meet standards. The separation of solids from liquids can be achieved through various means, including gravity settling, flotation, mechanical dewatering, filtration and evaporation. As important as the liquid solids separation unit operations are, they are driven by the chemistry of the water to be treated. The content of the dissolved solids will influence the quality and quantity of the solids produced during precipitation. Thus the two aspects must be integrated, with chemistry first, then mechanical engineering. This presentation will provide an overview of a number of liquid solids separation tools currently being used to treat AMD-AG at several sites in the USA. It will also discuss how their operations are impacted by the chemistry of their particular acid water feeds. The tools used include clarifier-thickeners, solids contact clarifiers, dissolved air flotation, polishing filters, membrane filters, and mechanical dewatering devices (belt and filter presses, vacuum filters, and driers).
Address J.H. Smith III, SEPCO Incorporated, Fort Collins, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Book; Conference-Paper; AMD treatment, it works but are we using the right equipment?; 2263351; Using Smart Source Parsing 00-Proceedings-of-the-7th-international-conference-Fort-Collins-January- 2000 Netherlands; Geobase Approved no
Call Number CBU @ c.wolke @ 17541 Serial 237
Permanent link to this record
 

 
Author Miller, S.D.
Title Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands Type Book Chapter
Year 1999 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords acid mine drainage; controls; decontamination; environmental analysis; environmental effects; geochemistry; ground water; land management; lime; oxidation; pH; pollutants; pollution; preventive measures; risk assessment; soils; sulfides; surface water; waste disposal; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Lewis Publishers Place of Publication Boca Raton Editor Wong, M.H.; Wong, J.W.C.; Baker, A.J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 157504109x Medium
Area Expedition Conference
Notes Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands; GeoRef; English; 2000-057936 Approved no
Call Number CBU @ c.wolke @ 5951 Serial 298
Permanent link to this record
 

 
Author Kleinmann, R.; Majumdar, S.K.; Miller, E.W.; Brenner, F.J.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue (down) Pages 497-509
Keywords abandoned mines; acid mine drainage; coal mines; constructed wetlands; drainage; environmental effects; mines; mitigation; pollutants; pollution; remediation; surface water; toxic materials; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher The Pennsylvania Academy of Science Book Publications Place of Publication 25 Editor
Language Summary Language Original Title
Series Editor Series Title Ecology of wetlands and associated systems Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructing wetlands for passive treatment of coal mine drainage; 2002-024212; GeoRef; English; References: 27; illus. incl. 2 tables United States (USA) Approved no
Call Number CBU @ c.wolke @ 6210 Serial 330
Permanent link to this record
 

 
Author Kingham, N.W.; Semenak, R.; Powell, G.; Way, S.
Title Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords acid mine drainage; Basin-Luttrell Pit; cost; environmental effects; leachate; Lewis and Clark County Montana; metals; Montana; osmosis; pollutants; pollution; precipitation; reverse osmosis; soils; sulfates; tailings; Ten Mile Creek; United States; waste rock; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046128; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5610 Serial 331
Permanent link to this record
 

 
Author Benzaazoua, M.; Bussiere, B.
Title Desulphurization of tailings with low neutralizing potential; kinetic study and flotation modeling Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; conference proceedings Abbreviated Journal
Volume Issue (down) Pages
Keywords acid mine drainage chemical properties chemical reactions environmental analysis environmental effects experimental studies flotation geochemistry kinetics laboratory studies mathematical models neutralization pH pollution sulfur tailings 22 Environmental geology 02A General geochemistry
Abstract Environmental desulphurization is an attractive alternative for acid generating tailings management as demonstrated during the last few years. In fact, such process placed at the end of the primary treatment circuit allows to reduce greatly the amount of problematic tailings by concentrating the sulphidic fraction. Moreover, the desulphurized tailings (non-acid generating) have the geotechnical and environmental properties for being used as fine material in a cover with capillary barrier effects. To produce desulphurized tailings, non selective froth flotation is the most adapted method as shown in many previous works. Desulphurization level is fixed by tailings sulphur content (or sulphide content) and neutralization potential NP. The final residue should have enough NP to compensate for his acid generating potential AP. In this paper, the authors present the results of laboratory tests conducted in Denver cells for studying the sulphide flotation kinetics of four mine tailings which are characterized by a weak neutralization potential (under 37 kg CaCO (sub 3) /t). Tailings 1, 2, 3 and 4 contain respectively 5.27, 10, 4.25 and 16.9 sulphur Wt. %. Tailings 1 and 2 are cyanide free and are well floated at pH around 11 by using amyl xanthate as collector. Collector dosage was optimized for these tailings and the results show that Tailing 2 need more collector. However, Tailings 3 and 4, which come from a gold cyanidation process, could not provide good sulphide recovery with xanthate collector because of the pyrite depression. To overcome this problem, amine acetate was used successfully but induces important entrainment. The consumption of this collector was also optimized. The results of kinetic tests and collector dosage were combined and modeled to establish relationships which allow to estimate the desulphurization performances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Desulphurization of tailings with low neutralizing potential; kinetic study and flotation modeling; GeoRef; English; 2002-060841; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 26; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16572 Serial 452
Permanent link to this record