|   | 
Details
   web
Records
Author Kuyucak, N.
Title Acid mine drainage prevention and control options Type Journal Article
Year 2002 Publication CIM Bull. Abbreviated Journal
Volume 95 Issue (down) 1060 Pages 96-102
Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management
Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.
Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17532 Serial 64
Permanent link to this record
 

 
Author Zinck, J.M.; Aube, B.C.
Title Optimization of lime treatment processes Type Journal Article
Year 2000 Publication CIM Bull. Abbreviated Journal
Volume 93 Issue (down) 1043 Pages 98-105
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage buffering lime Canada
Abstract Lime neutralization technology is widely used in Canada for the treatment of acid mine drainage and other acidic effluents. In many locations, improvements to the lime neutralization process are necessary to achieve a maximum level of sludge densification and stability. Conventional lime neutralization technology effectively removes dissolved metals to below regulated limits. However, the metal hydroxide and gypsum sludge generated is voluminous and often contains less than 5% solids. Despite recent improvements in the lime neutralization technology, each year, more than 6 700 000 m3 of sludge are generated by treatment facilities operated by the Canadian mining industry. Because lime neutralization is still seen as the best available approach for some sites, sludge production and stability are expected to remain as issues in the near future. Several treatment parameters significantly impact operating costs, effluent quality, sludge production and the geochemical stability of the sludge. Studies conducted both at CANMET and NTC have shown that through minor modifications to the treatment process, plant operators can experience a reduction in operating costs, volume of sludge generated, metal release to the environment and liability. This paper discusses how modifications in plant operation and design can reduce treatment costs and liability associated with lime treatment.
Address J.M. Zinck, CANMET, Mining and Mineral Sciences Lab., Natural Resources Canada, Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Optimization of lime treatment processes; 2291672; Canada 17; Geobase Approved no
Call Number CBU @ c.wolke @ 17537 Serial 183
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue (down) 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author Sanders, F.; Rahe, J.; Pastor, D.; Anderson, R.
Title Wetlands treat mine runoff Type Journal Article
Year 1999 Publication Civil Engineering Abbreviated Journal
Volume 69 Issue (down) 1 Pages 53-55
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage constructed wetland heavy metal remediation United States Montana Blackfoot River
Abstract In the late 1890s, silver, lead and zinc deposits were discovered along the headwaters of the Blackfoot River, northeast of Missoula, Mont. Settlers began mining the metals in earnest, and eventually the mines became known as the Upper Blackfoot Mining Complex (UBMC). Many of the mines were operated long enough to supply metals for World War II weaponry, but after the war the mines were abandoned, and by the 1960s, their orange-tainted runoff began to concern both passersby and state officials. In 1991, the state contacted the current owners of several of those mines-including the Mike Horse and the Anaconda-to negotiate a voluntary cleanup. The American Smelting and Refining Co. (ASARCO) and the Atlantic Richfield Co. (ARCO) agreed to remediate the sites' metal-enriched, moderately to severely acidic drainage, which was discharging into the upper Blackfoot River. As part of effort to reclaim the Mike Horse and Anaconda mines, engineers with McCulley, Frick and Gilman Inc. (MFG), Boulder, Colo., developed an integrated, passive wetland treatment system that will take several years to reach full treatment capacity in the high-elevation environment, but will last for decades. (Constructed and restored wetlands have also been part of the remediation of other UBMC mines, such as the Carbonate and Paymaster mines.) The Mike Horse and Anaconda system, designed to meet National Pollutant Discharge Elimination Systems (NPDES) restrictions, concentrates primarily on zinc and iron and, to a lesser extent, on copper, lead and other metals.
Address F. Sanders, McCulley, Frick and Gilman Inc., Boulder, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7024 ISBN Medium
Area Expedition Conference
Notes Wetlands treat mine runoff; 0411276; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17551 Serial 256
Permanent link to this record
 

 
Author Banks, S.B.; Banks, D.
Title Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK Type Book Chapter
Year 2001 Publication Geoenvironmental engineering Engineering Geology Abbreviated Journal
Volume Issue (down) Pages 31-37
Keywords abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology
Abstract The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.
Address
Corporate Author Thesis
Publisher Place of Publication 60 Editor Yong, R.N.; Thomas, H.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16515 Serial 31
Permanent link to this record