|   | 
Details
   web
Records
Author Skousen, J.
Title Overview of passive systems for treating acid mine drainage Type Journal Article
Year 1997 Publication Green Lands Abbreviated Journal
Volume 27 Issue (down) 4 Pages 34-43
Keywords acid mine drainage; anoxic limestone drains; bioremediation; constructed wetlands; diversion wells; limestone ponds; mitigation; open limestone channels; passive systems; pollution; remediation; successive alkalinity producing systems; technology; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-0110 ISBN Medium
Area Expedition Conference
Notes Overview of passive systems for treating acid mine drainage; 2000-019214; References: 59; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6309 Serial 247
Permanent link to this record
 

 
Author Simmons, J.A.; Andrew, T.; Arnold, A.; Bee, N.; Bennett, J.; Grundman, M.; Johnson, K.; Shepherd, R.
Title Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams Type Journal Article
Year 2006 Publication Mine Water Env. Abbreviated Journal
Volume 25 Issue (down) 4 Pages 241-245
Keywords acid mine drainage aluminum calcium limestone sand sediment stream liming West Virginia
Abstract In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams; 1; FG 4 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17420 Serial 248
Permanent link to this record
 

 
Author Gong, Z.; Huang, J.; Jiang, H.
Title Study of comprehensive retrieval utilization and the treatment of acid mine wastewater Type Journal Article
Year 1996 Publication Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology Abbreviated Journal
Volume 27 Issue (down) 4 Pages 432-435
Keywords acid mine drainage Asia China copper Far East heavy metals metals pH pollution sulfides utilization waste water water 22, Environmental geology
Abstract Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1005-9792 ISBN Medium
Area Expedition Conference
Notes Study of comprehensive retrieval utilization and the treatment of acid mine wastewater; 1998-066886; References: 4; 4 tables China (CHN); GeoRef; Chinese Approved no
Call Number CBU @ c.wolke @ 16650 Serial 370
Permanent link to this record
 

 
Author Eger, P.
Title Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes Type Journal Article
Year 1994 Publication Water Sci. Technol. Abbreviated Journal
Volume 29 Issue (down) 4 Pages 249-256
Keywords copper cobalt nickel zinc ion exchange sulfate reduction adsorption acid mine drainage passive treatment
Abstract When designing wetland treatment systems for trace metal removal, both aerobic and anaerobic processes can be incorporated into the final design. Aerobic processes such as adsorption and ion exchange can successfully treat neutral drainage in overlandflow systems. Acid drainage can be treated in anaerobic systems as a result of sulfate reduction processes which neutralize pH and precipitate metals.Test work on both aerobic and anaerobic systems has been conducted in Minnesota. For the past three years, overland flow test systems have successfully removed copper, cobalt, nickel and zinc from neutral mine drainage. Nickel, which is the major contaminant, has been reduced around 90 percent from 2 mg/L to 0.2 mg/L. A sulfate reduction system has successfully treated acid mine drainage for two years, increasing pH from 5 to over 7 and reducing concentrations of all metals by over 90 percent.Important factors to consider when designing wetlands to remove trace metals include not only the type of wetlandrequired but also the size of the system and the residence time needed to achieve the water quality standards.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223 ISBN Medium
Area Expedition Conference
Notes Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes; Isi:A1994nv30000032; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17336 Serial 394
Permanent link to this record
 

 
Author Adam, K.
Title Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites Type Journal Article
Year 2003 Publication Minerals and Energy Raw Materials Report Abbreviated Journal
Volume 18 Issue (down) 4 Pages 25-35
Keywords Waste Management and Pollution Policy Pollution and waste management non radioactive geographical abstracts: human geography environmental planning (70 11 5) geological abstracts: environmental geology (72 14 2) waste disposal waste management solid waste mining industry acid mine drainage Europe Eurasia
Abstract Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.
Address K. Adam, ECHMES Ltd, Mikras Asias 40-42, Athens 11527, Greece echmes@otenet.gr
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1404-1049 ISBN Medium
Area Expedition Conference
Notes Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites; 2582509; Norway 25; Geobase Approved no
Call Number CBU @ c.wolke @ 17510 Serial 492
Permanent link to this record