toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agency, U.S.E.P. openurl 
  Title Bioremediation of Acid Mine Drainage Using Sulfate-Reducing Bacteria Type RPT
  Year 2006 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Bioremediation of Acid Mine Drainage Using Sulfate-Reducing Bacteria; Opac Approved no  
  Call Number CBU @ c.wolke @ 7254 Serial 489  
Permanent link to this record
 

 
Author Agency, U.S.E.P. openurl 
  Title Type Book Whole
  Year 2006 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords Acid mine drainage California Alpine County Bioreactors California Alpine County Bioremediation California Alpine County Hazardous waste site remediation California Alpine County  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Research Laboratory, Office of Research and Development, United States Environmental Protection Agency Place of Publication Cincinnati, OH. Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Compost-free bioreactor treatment of acid rock drainage Leviathan Mine, California : innovative technology evaluation report Abbreviated Series Title  
  Series Volume 2 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Compost-free bioreactor treatment of acid rock drainage Leviathan Mine, California : innovative technology evaluation report; Cincinnati, OH. : National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency; Opac Approved no  
  Call Number CBU @ c.wolke @ 7248 Serial 490  
Permanent link to this record
 

 
Author Ciftci, H.; Akcil, A. openurl 
  Title Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD) Type Journal Article
  Year 2006 Publication Madencilik = The = Journal of the Chamber of Mining Engineers of Turkey Abbreviated Journal  
  Volume 45 Issue (up) 1 Pages 35-45  
  Keywords acid mine drainage biodegradation methods microorganisms oxidation pollutants pollution remediation sulfides 22, Environmental geology  
  Abstract Acidic mine drainage (AMD) is a serious environmental problem in mining areas throughout the world. AMD occurs as a result of the natural oxidation of sulfide minerals when they are exposed to oxygen and water during their disposal and storage at the mining areas. Because it includes low pH and high concentrations of dissolved metals and sulphates, AMD can potentially damage to the environment. If the formation of AMD can't be prevented and controlled, it must be collected and treated to remove acidity and reduce the concentration of heavy metals and suspended solids before its release to the environment. Different types of microorganisms in the treatment of AMD can play a very important role in the development and the application of microbiological prevention, control and treatment technologies. The purpose of this article is to give information about the passive biological methods used in the treatment and the control of AMD and the role of microorganisms in these methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-9416 ISBN Medium  
  Area Expedition Conference  
  Notes Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD); 2006-075215; References: 58 Turkey (TUR); GeoRef; Turkish Approved no  
  Call Number CBU @ c.wolke @ 16444 Serial 416  
Permanent link to this record
 

 
Author Canty, G.A.; Everett, J.W. openurl 
  Title Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage Type Journal Article
  Year 2006 Publication Mine Water Env. Abbreviated Journal  
  Volume 25 Issue (up) 1 Pages 45-55  
  Keywords acid mine drainage AMD alkaline injection technology fluidized bed combustion ash Oklahoma  
  Abstract A demonstration project was conducted to investigate treating acid mine water by alkaline injection technology (AIT). A total of 379 t of alkaline coal combustion byproduct was injected into in an eastern Oklahoma drift coal mine. AIT increased the pH and alkalinity, and reduced acidity and metal loading. Although large improvements in water quality were only observed for 15 months before the effluent water chemistry appeared to approach pre-injection conditions, a review of the data four years after injection identified statistically significant changes in the mine discharge compared to pre-injection conditions. Decreases in acidity (23%), iron (18%), and aluminium (47%) were observed, while an increase in pH (0.35 units) was noted. Presumably, the mine environment reached quasi-equilibrium with the alkalinity introduced to the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage; 1; FG 6 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17319 Serial 422  
Permanent link to this record
 

 
Author Sasaki, K. url  openurl
  Title Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs Type Journal Article
  Year 2006 Publication Mater. Trans. Abbreviated Journal  
  Volume 47 Issue (up) 10 Pages 2457-2461  
  Keywords mine water treatment  
  Abstract A Mn-oxidizing fungus was isolated from a constructed wetland of Hokkaido (Japan), which is receiving the Mn-impacted drainage, and genetically and morphologically identified as Paraconiothyrium sp.-like strain. The optimum pHs were 6.45-6.64, where is more acidic than those of previously reported Mn-oxidizing fungi. Too much nutrient inhibited fungal Mn-oxidation, and too little nutrient also delayed Mn oxidation even at optimum pH. In order to achieve the oxidation of high concentrations of Mn like mine drainage containing several hundreds g-m(-3) of Mn, it is important to find the best mix ratio among the initial Mn concentrations, inocolumn size and nutrient concentration. The strain has still Mn-tolerance with more than 380 g-m(-3) of Mn, but high Mn(II) oxidation was limited by pH control and supplied nutrient amounts. The biogenic Mn deposit was poorly crystallized birnessite. The strain is an unique Mn-oxidizing fungus having a high Mn tolerance and weakly acidic tolerance, since there has been no record about the property of the strain. There is a potentiality to apply the strain to the environmental bioremediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs; Wos:000242429300002; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16940 Serial 103  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: