|   | 
Details
   web
Records
Author Turek, M.
Title Recovery of NaCl from saline mine water in the ED-MSF system Type Journal Article
Year 2000 Publication 8th World Salt Symposium, Vols 1 and 2 Abbreviated Journal
Volume Issue (up) Pages 471-475
Keywords mine water treatment
Abstract A considerable part of water obtained by drainage of Polish coal-mines is saline which creates substantial ecological problems. The load of salt (mainly sodium chloride) amounts to 5 min t/year. Despite the utilisation of saline coalmine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland there are only two installations utilising coal-mine waters and producing 100,000 t salt per year. In the case of the most concentrated waters, the so-called coal-mine brines, the method of concentrating by evaporation in twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. In the case of low salinity waters they are preconcentrated first by RO method. High energy consumption in above-mentioned methods of evaporation is a considerable restriction in the utilisation of coal-mine brines. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulphate ions in the coal-mine waters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-0-444-50065-6 ISBN Medium
Area Expedition Conference
Notes May; Recovery of NaCl from saline mine water in the ED-MSF system; Isip:000088786800075; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17092 Serial 172
Permanent link to this record
 

 
Author Groudev, S.N.; Georgiev, P.S.; Spasova, I.I.; Nicolova, M.N.
Title In situ treatment of mine waters by means of a permeable barrier Type Journal Article
Year 2000 Publication Groundwater 2000 Abbreviated Journal
Volume Issue (up) Pages 417-418
Keywords mine water treatment
Abstract Acid ground waters contaminated with radioactive elements (U, Ra, Th), toxic heavy metals (Cu, Zn, Cd, Mn, Fe), arsenic and sulphates were treated by means of a permeable barrier. The barrier was filled with a mixture of biodegradable solid organic substrates (spent mushroom compost, sawdust and cow manure) and was inhabited by a mixed microbial community consisting of sulphate-reducing bacteria and other metabolically interdependent microorganisms. An efficient removal of the pollutants was achieved by this barrier during the different climatic seasons, even at ambient temperatures close to degrees C. The microbial dissimilatory sulphate reduction and the sorption of pollutants by the organic matter in the barrier were the main processes involved in this removal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes In situ treatment of mine waters by means of a permeable barrier; Isip:000088384300185; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8407 Serial 173
Permanent link to this record
 

 
Author Mitchell, P.
Title Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil Type Journal Article
Year 2000 Publication Environmental Issues and Management of Waste in Energy and Mineral Production Abbreviated Journal
Volume Issue (up) Pages 307-314
Keywords mine water treatment
Abstract Klean Earth Environmental Company (KEECO) has developed the Silica Micro Encapsulation (SME) technology to treat heavy metals and radionuclides in water and soil. Unlike conventional neutralization/precipitation methods, SME encapsulates the contaminants in a permanent silica matrix resistant to degradation under even extreme environmental conditions. Encapsulated metals and radionuclides are effectively immobilized, minimising the potential for environmental contamination and impacts on human or ecosystem health. The effectiveness of SME has been proven through independent reviews, laboratory and field trials and commercial contracts, and the technology can be used to control and prevent acid drainage and the transport of soluble metals from mine sites, tailings areas, landfills and industrial sites. Successful demonstrations in the treatment of sediments and in brownfield redevelopment, treatment of metal-finishing wastewaters, and control of hazardous, low-level, and mixed waste at DOE/DOD sites and commercial nuclear power plants have also been undertaken. This paper describes the reactions involved in the SME process, the methods by which SME chemicals are introduced to various media, and recent project applications relevant to the cost effective remediation and prevention of environmental problems arising from energy and mineral production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil; Isip:000088357300049; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17088 Serial 174
Permanent link to this record
 

 
Author Weeks, R.E.; Krohn, R.; Walker, T.H.
Title Water management during the Pinto Valley removal action Type Conference Article
Year 2000 Publication Tailings and Mine and Waste 2000, Proceedings of the Seventh International Conference, Fort Collins, US, Jan 22 26, 2000 Abbreviated Journal
Volume Issue (up) Pages 499-506
Keywords Bergbau Erzbergbau Erzaufbereitung Damm Gewässerschutz Umweltschutz Grundwasser Rekultivierung Versatzgut Abtragen Niederschlag=Atmosphäre Dammbruch Wassermanagement
Abstract Der Bruch des Dammes einer Halde der Grube Nr. 14 des Kupfer- Bergbaubetriebes Pinto Valley in Arizona, USA, im Jahre 1997 führte zum Eintrag von 370000 yd(exp 3) Bergematerials und Tailings in das Bett des Flusses Pinto Creek, USA, wodurch letzteres blockiert wurde. Der Vorfall ereignete sich in bergigem Gelände unterhalb eines 14 Quadratmeilen großen Abschnittes des Flusseinzugsgebietes oberhalb des Sees Roosevelt Lake, USA, einer Trinkwasserquelle für Phoenix, USA. Aufgrund der Bedeutung des Gebietes wurde eine Strategie zur Verhütung weiterer Beeinträchtigungen der Wasserqualität ausgearbeitet. Diese beinhaltete Managementaspekte zur Gewährleistung einer schnellen Planung und Ausführung der notwendigen Arbeiten gekoppelt mit der Planung, dem Bau und dem Betrieb von Rückhalte und Umleitungssystemen für auftretende Wässer. Die Auslegung dieser Systeme erfolgte auf der Grundlage der Daten des Einzugsgebietes und der klimatischen Verhältnisse, wobei verschiedene Wahrscheinlichkeiten der Überschreitung der ermittelten Werte berücksichtigt wurden. Innerhalb von acht Monaten konnten die Tailings aus dem betroffenen Gebiet entfernt werden, ohne dass belastete Oberflächenwässer freigesetzt wurden.
Address Golder Associates, Phoenix, US; BHP Copper, Miami, US; AGRA Earth & Environmental, Phoenix, US
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Water management during the Pinto Valley removal action; BERG, Copyright FIZ Technik e.V.; EN Englisch; 90-5809-126-0; 200007 03261; 22520, BERG , 25.09.00; Words: 374; 8 Seiten, 1 Bild, 3 Quellen 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik* 3UX *Umweltbelastung, technik* Approved no
Call Number CBU @ c.wolke @ 17593 Serial 215
Permanent link to this record
 

 
Author Watzlaf, G.R.; Schroeder, K.T.; Kairies, C.L.
Title Type Book Whole
Year 2000 Publication Abbreviated Journal
Volume Issue (up) Pages 262-274
Keywords passive treatment anoxic limestone drains wetlands sulfate reduction successive alkalinity-producing systems acid mine drainage ALD SAPS RAPS
Abstract Ten passive treatment systems, located in Pennsylvania and Maryland, have been intensively monitored for up to ten years. Influent and effluent water quality data from ten anoxic limestone drains (ALDs) and six reducing and alkalinity-producing systems (RAPS) have been analyzed to determine long-term performance for each of these specific unit operations. ALDs and RAPS are used principally to generate alkalinity, ALDs are buried beds of limestone that add alkalinity through dissolution of calcite. RAPS add alkalinity through both limestone dissolution and bacterial sulfate reduction. ALDs that received mine water containing less than 1 mg/L of both ferric iron and aluminum have continued to produce consistent concentrations of alkalinity since their construction. However, an ALD that received 20 mg/L of aluminum experienced a rapid reduction in permeability and failed within five months. Maximum levels of alkalinity (between 150 and 300 m&) appear to be reached after I5 hours of retention. All but one RAPS in this study have been constructed and put into operation only within the past 2.5 to 5 years. One system has been in operation and monitored for more than nine years. AIkalinity due to sulfate reduction was highest during the first two summers of operation. Alkalinity due to a limestone dissolution has been consistent throughout the life of the system. For the six RAPS in this study, sulfate reduction contributed an average of 28% of the total alkalinity. Rate of total alkalinity generation range from 15.6 gd''rn-'to 62.4 gd-'mL2 and were dependent on influent water quality and contact time.
Address
Corporate Author Thesis
Publisher Place of Publication Tampa Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 17th Annual National Meeting – American Society for Surface Mining and Reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Long-Term Perpormance of Alkalinity-Producing Passive Systems for the Treatment of Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 5 Tab. Approved no
Call Number CBU @ c.wolke @ 17440 Serial 216
Permanent link to this record