toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chalaturnyk, R.J.; Scott, J.D.; Ozum, B. openurl 
  Title Management of Oil Sands Tailings Type Journal Article
  Year 2002 Publication Pet. Sci. Technol. Abbreviated Journal  
  Volume 20 Issue (down) 9-10 Pages 1025-1046  
  Keywords mine water  
  Abstract In Alberta, oil sands bitumen is utilized for synthetic crude oil (SCO) production by surface mining, bitumen extraction followed by primary (coking) and secondary (catalytic hydro-treating) upgrading processes. SCO is further refined in specially designed or slightly modified conventional refineries into transportation fuels. Oil sands tailings, composed of water, sands, silt, clay and residual bitumen, is produced as a byproduct of the bitumen extraction process. The tailings have poor consolidation and Water release characteristics. For twenty years, significant research has been performed to improve the consolidation and water release characteristics of the tailings. Several processes were developed for the management of oil sands tailings, resulting in different recovered water characteristics, consolidation rates and consolidated solid characteristics. These processes may affect the performance of the overall plant operations. Apex Engineering Inc. (AEI) has been developing a process for, thesame purpose. In this process oil sands tailings are treated with Ca(OH)(2) lime and CO2 and thickened using a suitable thickener. The combination of chemical treatment and the use of a thickener results in the release of process water in short retention times without accumulation of any ions in the recovered water. This makes it possible to recycle the recovered water, probably after a chemical treatment, as warm as possible, which improves the thermal efficiency of the extraction process. The AEI Process can be applied in many different fashions for the management of different fractions of the tailings effluent, depending on the overall plant operating priorities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1091-6466 ISBN Medium  
  Area Expedition Conference  
  Notes Management of Oil Sands Tailings; Isi:000179750000010; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17320 Serial 420  
Permanent link to this record
 

 
Author Lawrence, R. url  openurl
  Title Technology reduces sulphur compounds – A new way of treating acid mine drainage Type Journal Article
  Year 2002 Publication Canadian Mining Journal Abbreviated Journal  
  Volume 123 Issue (down) 7 Pages 27-27  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Technology reduces sulphur compounds – A new way of treating acid mine drainage; Wos:000179123100016; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8075 Serial 120  
Permanent link to this record
 

 
Author Scholz, M. url  openurl
  Title Mature experimental constructed wetlands treating urban water receiving high metal loads Type Journal Article
  Year 2002 Publication Biotechnology Progress Abbreviated Journal  
  Volume 18 Issue (down) 6 Pages 1257-1264  
  Keywords mine water treatment  
  Abstract The aim was to assess over 2 years the treatment efficiencies of vertical-flow wetland filters containing macrophytes and granular media of different. adsorption capacities. Different concentrations of lead and copper sulfate (constant for 1 year each) were added to urban beck inflow water in order to simulate pretreated (pH adjustment assumed) mine wastewater. After 1 year of operation, the inflow concentrations for lead and copper were increased from 1.30 to 2.98 and from 0.98 to 1.93 mg/L, respectively. However, the metal mass load rates (mg/m(2)/d) were increased by a factor of approximately 4.9 for lead and 4.3 for copper. No breakthrough of metals was recorded. Lead and copper accumulated in the biomass of the litter zone and rhizomes of the macrophytes. Furthermore, microbiological activity decreased during the second year of operation. Bioindicators such as ciliated protozoa and zooplankton decreased sharply in numbers but diatoms increased. In conclusion, the use of macrophytes and, adsorption media did not significantly enhance the filtration of lead and copper. Particulate lead is removed by filtration processes including straining. Furthermore, some expensive and time-consuming water quality variables can be predicted with less expensive ones such as temperature in order to reduce sampling costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mature experimental constructed wetlands treating urban water receiving high metal loads; Wos:000179760000018; Times Cited: 11; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17032 Serial 119  
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B. openurl 
  Title Pitfalls of passive mine water treatment Type Journal Article
  Year 2002 Publication Reviews in Environmental Science & Biotechnology Abbreviated Journal  
  Volume 1 Issue (down) 5 Pages 335-343  
  Keywords acid mine drainage acidophilic microorganisms heavy metals iron oxidation iron reduction remediation sulfate reduction wetlands Wheal Jane  
  Abstract Passive (wetland) treatment of waters draining abandoned and derelict mine sites has a number of detrac-tions. Detailed knowledge of many of the fundamental processes that dictate the performance and longevity of constructed systems is currently very limited and therefore more research effort is needed before passive treatment becomes an “off-the-shelf” technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-1705 ISBN Medium  
  Area Expedition Conference  
  Notes Dec.; Pitfalls of passive mine water treatment; 2; FG als Datei vorhanden 4 Abb., 1 Tab.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10138 Serial 336  
Permanent link to this record
 

 
Author Demin, O.A.; Dudeney, A.W.L.; Tarasova, I.I. openurl 
  Title Remediation of Ammonia-rich Minewater in Constructed Wetlands Type Journal Article
  Year 2002 Publication Environ. Technol. Abbreviated Journal  
  Volume 23 Issue (down) 5 Pages 497-514  
  Keywords constructed wetlands reed beds ammonia removal nitrification woolley colliery horizontal subsurface flow nitrate removal waste-water denitrification nitrification  
  Abstract A three-year study of ammonia removal from minewater was carried out employing constructed wetland systems (surface flow wetland and subsurface flow wetland cells) at the former Woolley Mine in West Yorkshire, UK The 1.4 Ha surface flow wetland (constructed in 1995) reduced the ammonia concentration from 3.5 – 4.5 mg l(-1) to < 2 3 mg V during the first half of the study and to essentially zero in the last year (2000 – 2001). About 25 % of contained ammonia was converted to nitrate, about 10 % was consumed by the plants and up to 30 % was converted to nitrogen gas. This maturation effect was attributed to increased depth of sludge from sedimentation of ochre, providing increased surface area for immobilisation of ammonia oxidising bacteria. The surface flow wetland finally removed 23 g m(-2) day(-1) ammonia in comparison with 3.8 g m(-2) day' for the subsurface flow (pea gravel) wetland cells, constructed for the present work and dosed with ammonium salts. Removal of ammonia by both systems was consistent with well-established mechanisms of nitrification and denitrification. It was also consistent with ammonia removal in wastewater wetland systems, although the greater aeration in the minewater systems obviated the need for special aeration cycles. The general role of wetland plants in such aerated conditions was attributed to maintaining hydraulic conditions (such as hydraulic efficiency and hydraulic resistance of substratum in subsurface flow systems) in the wetlands and providing a suspended solids filter for minewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3330 ISBN Medium  
  Area Expedition Conference  
  Notes Remediation of Ammonia-rich Minewater in Constructed Wetlands; Isi:000176238900002; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17328 Serial 405  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: