toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ettner, D.C. isbn  openurl
  Title Type Book Whole
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages 187-191  
  Keywords Passiv Mine Water Treatment alternative remediation technologies Kongens Mine Roros Folldal Mines Titania's tailings impoundment Storgangen Mine  
  Abstract Previous mining history in Norway has resulted in ongoing release of acid mine drainage. Preservation of the historical sites in mining areas does not allow for remediation technologies that result in significant alteration of the historical landscape. Therefore, alternative remediation techniques such as passive mine water treatment have been tested. The climate in Norway varies from mild coastal climates to artic climates, and one of the challenges with passive treatment systems is the cold winter conditions. Anaerobic treatment systems have been built at Kongens Mine near Røros, at Folldal mines, and at Titania's tailings impoundment near Storgangen Mine. These systems utilize sulfate-reducing bacteria that result in the precipitation of metal sulfides. A full- and pilot-scale system at Kongens Mine and Folldal were built in 2006 to remove copper and zinc from typical ARD in an alpine climate. Previous testing with pilot scale systems at Kongens Mine showed that up to 85% copper and 48% zinc could be removed. At Titania A/S the anaerobic system is designed to remove nickel from neutral waters. At this system over 90% nickel is removed when water flow is regulated at a constant flow. Testing shows that the system can function in cold winter conditions, however, optimal metal removal is achieved under warmer temperatures. Temperatures changes by global climatic warming will not adversely affect these anaerobic systems. However, extreme precipitation events and the resulting rapid fluctuations of ARD runoff will provide a challenge for the effectiveness of these systems.  
  Address  
  Corporate Author Thesis  
  Publisher Mako Edizioni Place of Publication Cagliari Editor Cidu, R.; Frau, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Water in Mining Environments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN 978-88-902955-0-8 Medium  
  Area Expedition Conference  
  Notes Passive Mine Water Treatment in Norway; 1; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 3 Abb., 2 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17338 Serial 387  
Permanent link to this record
 

 
Author Benkovics, I.; Csicsák, J.; Csövári, M.; Lendvai, Z.; Molnár, J. openurl 
  Title Mine Water Treatment – Anion-exchange and Membrane Process Type Journal Article
  Year 1997 Publication Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal  
  Volume 1 Issue Pages 149-157  
  Keywords uranium mining Hungary Mecsek Ore Mining Company waste water mine water chemistry nano-filtration reverse osmosis pilot plant mine water treatment treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Mine Water Treatment – Anion-exchange and Membrane Process; 1; FG 6 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9530 Serial 455  
Permanent link to this record
 

 
Author Bagdy, I.; Kaocsány, L. openurl 
  Title Treatment of mine water for the protection of pumps Type Journal Article
  Year 1982 Publication Proceedings, 1st International Mine Water Congress, Budapest, Hungary Abbreviated Journal  
  Volume ABCD Supplementary volume Issue Pages 201-214  
  Keywords pumps mine water treatment sediment Hungary karst  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine water for the protection of pumps; 1; 3 Abb.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9509 Serial 470  
Permanent link to this record
 

 
Author Nakazawa, H. url  openurl
  Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
  Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal  
  Volume Issue Pages 373-381  
  Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production  
  Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0-87339-642-1 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17456 Serial 151  
Permanent link to this record
 

 
Author Dugan, P.R. doi  openurl
  Title Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions Type Journal Article
  Year 1987 Publication Biotechnol. Bioeng. Abbreviated Journal  
  Volume 29 Issue 1 Pages 6  
  Keywords mine water treatment Chemistry Biochemistry and Biotechnology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0006-3592 ISBN Medium  
  Area Expedition Conference  
  Notes Jan; Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions; New York, NY [u.a.] : Wiley; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7028.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7028 Serial 80  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: