|   | 
Details
   web
Records
Author Dutcher, R.R.; Jones, E.B.; Lovell, H.L.; Parizek, R.; Stefanko, R.
Title Mine drainage; Part 1, Abatement, disposal, treatment Type Journal Article
Year 1966 Publication Mineral Industries (University Park) Abbreviated Journal
Volume 36 Issue 3 Pages 1-7
Keywords Acid drainage problem; acid mine drainage; coal mines; disposal wells; engineering geology; mines; mining geology; Pennsylvania; United States; waste disposal 30, Engineering geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0097-2320 ISBN Medium
Area Expedition Conference
Notes Mine drainage; Part 1, Abatement, disposal, treatment; 1966-013727; illus., table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6857 Serial 397
Permanent link to this record
 

 
Author Blowes, D.W.; Bain, J.G.; Smyth, D.J.; Ptacek, C.J.; Jambor, J.L.; Blowes, D.W.; Ritchie, A.I.M.
Title Treatment of mine drainage using permeable reactive materials Type Journal Article
Year 2003 Publication Environmental Aspects of Mine Wastes Abbreviated Journal
Volume 31 Issue Pages 361-376
Keywords acid mine drainage; acidification; aquatic environment; aquifer vulnerability; aquifers; bacteria; biodegradation; Canada; case studies; chemical reactions; Cochrane District Ontario; concentration; damage; degradation; disposal barriers; Eastern Canada; effluents; environmental analysis; ferric iron; Fry Canyon; ground water; iron; Kidd Creek Site; metal ores; metals; mines; models; Monticello Canyon; Ontario; pollution; preferential flow; reactive barriers; remediation; sediments; solid waste; sulfate ion; sulfates; sulfides; tailings; Timmins Ontario; United States; uranium ores; Utah; waste disposal; waste management; waste rock mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0144-7815 ISBN Medium
Area Expedition Conference
Notes Treatment of mine drainage using permeable reactive materials; Ccc:000186842900017; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7910 Serial 182
Permanent link to this record
 

 
Author Fricke, J.; Blickwedel, R.; Hagerty, P.
Title Biotreatment of metal mine waste waters; case histories Type Journal Article
Year 1997 Publication Open-File Report – US Geological Survey Abbreviated Journal
Volume Of 97-0496 Issue Pages 25
Keywords abandoned mines acid mine drainage bacteria bioremediation chemical composition concentration efficiency geochemistry metals mines pollution remediation USGS waste water water quality water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0196-1497 ISBN Medium
Area Expedition Conference
Notes Biotreatment of metal mine waste waters; case histories; 1; GeoRef: 98-68755 160101 / € 0; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9627 Serial 375
Permanent link to this record
 

 
Author Kleinmann, R.L.P.
Title Acid Mine Water Treatment using Engineered Wetlands Type Journal Article
Year 1990 Publication Int. J. Mine Water Abbreviated Journal
Volume 9 Issue 1-4 Pages 269-276
Keywords wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum
Abstract 400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0255-6960 ISBN Medium
Area Expedition Conference
Notes Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17368 Serial 328
Permanent link to this record
 

 
Author Skousen, J.; Jenkins, M.
Title Acid mine drainage treatment costs with calcium oxide and the Aquafix machine Type Journal Article
Year 2001 Publication Green Lands Abbreviated Journal
Volume 31 Issue 3 Pages 46-51
Keywords acid mine drainage; chemical composition; Clay County West Virginia; coal mines; cost; decontamination; ground water; instruments; lime; Mary Ruth Mines; mines; pollution; Preston County West Virginia; remediation; sludge; surface water; techniques; United States; water pollution; water treatment; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0271-0110 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage treatment costs with calcium oxide and the Aquafix machine; 2002-045348; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5759 Serial 246
Permanent link to this record