|   | 
Details
   web
Records
Author Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.
Title Biological treatment of acid mine drainage Type Book Chapter
Year 1999 Publication Process Metallurgy, vol.9, Part B Abbreviated Journal
Volume Issue Pages 559-567
Keywords acid mine drainage adsorption alkaline earth metals arsenic Bingham Canyon Mine bioremediation Budelco Zinc Refinery cadmium copper Cornwall England England Europe Great Britain heavy metals iron magnesium manganese metals Netherlands pH phase equilibria pollution remediation sulfate ion United Kingdom United States Utah Western Europe Wheal Jane Mine zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Amils, R.; Ballester, A.
Language Summary Language Original Title
Series Editor Series Title Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 0444501932 Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; GeoRef; English; 2000-049809; International biohydrometallurgy symposium IBS'99, Madrid, Spain, June 20-23, 1999 References: 11; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16595 Serial 442
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W.
Title Treatment of dissolved metals using permeable reactive barriers Type Journal Article
Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal
Volume Issue 250 Pages 483-490
Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment
Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0144-7815 ISBN Medium
Area Expedition Conference
Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8601 Serial 178
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W.
Title Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
Year 2000 Publication J Contam Hydrol Abbreviated Journal
Volume 45 Issue 1-2 Pages 123-137
Keywords acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides
Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0169-7722 ISBN Medium
Area Expedition Conference
Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 9401 Serial 46
Permanent link to this record
 

 
Author Aytas, S.O.; Akyil, S.; Aslani, M.A.A.; Aytekin, U.
Title Removal of uranium from aqueous solutions by diatomite (Kieselguhr) Type Journal Article
Year 1999 Publication Journal of Radioanalytical and Nuclear Chemistry Abbreviated Journal
Volume 240 Issue 3 Pages 973-976
Keywords acid mine drainage; actinides; adsorption; aqueous solutions; clastic rocks; concentration; decontamination; diatomite; experimental studies; isotherms; laboratory studies; metals; pH; physicochemical properties; pollution; remediation; sedimentary rocks; solutes; sorption; techniques; uranium; uranyl ion; waste disposal; waste water 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0236-5731 ISBN Medium
Area Expedition Conference
Notes Removal of uranium from aqueous solutions by diatomite (Kieselguhr); 2000-058980; References: 18; illus. incl. 3 tables International (III); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5964 Serial 471
Permanent link to this record
 

 
Author Eger, P.
Title Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes Type Journal Article
Year 1994 Publication Water Sci. Technol. Abbreviated Journal
Volume 29 Issue 4 Pages 249-256
Keywords copper cobalt nickel zinc ion exchange sulfate reduction adsorption acid mine drainage passive treatment
Abstract When designing wetland treatment systems for trace metal removal, both aerobic and anaerobic processes can be incorporated into the final design. Aerobic processes such as adsorption and ion exchange can successfully treat neutral drainage in overlandflow systems. Acid drainage can be treated in anaerobic systems as a result of sulfate reduction processes which neutralize pH and precipitate metals.Test work on both aerobic and anaerobic systems has been conducted in Minnesota. For the past three years, overland flow test systems have successfully removed copper, cobalt, nickel and zinc from neutral mine drainage. Nickel, which is the major contaminant, has been reduced around 90 percent from 2 mg/L to 0.2 mg/L. A sulfate reduction system has successfully treated acid mine drainage for two years, increasing pH from 5 to over 7 and reducing concentrations of all metals by over 90 percent.Important factors to consider when designing wetlands to remove trace metals include not only the type of wetlandrequired but also the size of the system and the residence time needed to achieve the water quality standards.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0273-1223 ISBN Medium
Area Expedition Conference
Notes Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes; Isi:A1994nv30000032; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17336 Serial 394
Permanent link to this record