|   | 
Details
   web
Records
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Yernberg, W.R.
Title Improvements seen in acid-mine-drainage technology Type Journal Article
Year 2000 Publication Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 67-70
Keywords acid mine drainage; bacteria; chemical weathering; coal mines; Colorado; copper ores; effects; geochemistry; hydrogen; inorganic acids; international cooperation; ions; lead ores; medical geology; metal ores; mines; molybdenum ores; oxidation; pH; pollution; prediction; pyrite; reclamation; remediation; research; risk assessment; silicates; soil treatment; solid waste; sulfides; sulfuric acid; Summitville Mine; tailings; tailings ponds; technology; United States; waste disposal; weathering; zinc ores 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0026-5187 ISBN Medium
Area Expedition Conference
Notes Improvements seen in acid-mine-drainage technology; 2000-069686; illus. incl. sect., sketch map United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5808 Serial 73
Permanent link to this record
 

 
Author Erten-Unal, M.; Wixson, B.G.
Title Biotreatment and Chemical Speciation of Lead and Zinc Mine/Mill Wastewater Discharges in Missouri, USA Type Journal Article
Year 1999 Publication Water Air Soil Pollut. Abbreviated Journal
Volume 116 Issue 3-4 Pages 501-522
Keywords biotreatment lead and zinc mine wastewater MINTEQ speciation biotreatment lead and zinc mine wastewater minteq speciation trout salmo-gairdneri water
Abstract Continued mining development in the world's largest lead producing area has generated and increased concern over effective mine water treatment in Missouri's New Lead Belt. A new type of mine/mill wastewater treatment system was constructed which consisted of a tailings pond followed by a series of artificially constructed meandering biotreatment channels and a polishing lagoon. This system provided additional retention time and distance for the removal of heavy metals by abundant aquatic plants and sedimentation. Seasonal field sampling and analytical testing that evaluated the present system confirmed that it provided good treatment for removal of heavy metals within the company property and produced a final effluent within the state and federal regulatory guidelines. On average, greater than 95% of zinc and manganese in the drainage water were removed by the biotreatment system, while lead and copper were 50 to 60%. A chemical equilibrium model, MINTEQ, was also used to identify various species of lead and zinc in the biotreatment system. The model predicted that the major species of carbonates and hydroxides would be the predominant complexes of lead and zinc for the pH and alkalinity values reported in the biotreatment system. These results were also supported by the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0049-6979 ISBN Medium
Area Expedition Conference
Notes Dec.; Biotreatment and Chemical Speciation of Lead and Zinc Mine/Mill Wastewater Discharges in Missouri, USA; Isi:000083273200004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10115.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17472 Serial 16
Permanent link to this record
 

 
Author Niyogi, D.K.; McKnight, D.M.; Lewis, W.M., Jr.; Kimball, B.A.
Title Experimental diversion of acid mine drainage and the effects on a headwater stream Type Journal Article
Year 1999 Publication Water-Resources Investigations Report Abbreviated Journal
Volume Wri 99-4018-A Issue Pages 123-130
Keywords abandoned mines acid mine drainage algae benthonic taxa biomass biota Colorado experimental studies heavy metals Lake County Colorado Leadville Colorado metals mines pH Plantae pollution remediation Saint Kevin Gulch Colorado tracers United States USGS water zinc
Abstract An experimental diversion of acid mine drainage was set up near an abandoned mine in Saint Kevin Gulch, Colorado. A mass-balance approach using natural tracers was used to estimate flows into Saint Kevin Gulch. The diversion system collected about 85 percent of the mine water during its first year of operation (1994). In the first 2 months after the diversion, benthic algae in an experimental reach (stream reach around which mine drainage was diverted) became more abundant as water quality improved (increase in pH, decrease in zinc concentrations) and substrate quality changed (decrease in rate of metal hydroxide deposition). Further increases in pH to levels above 4.6, however, led to lower algal biomass in subsequent years (1995-97). An increase in deposition of aluminum precipitates at pH greater than 4.6 may account for the suppression of algal biomass. The pH in the experimental reach was lower in 1998 and algal biomass increased. Mine drainage presents a complex, interactive set of stresses on stream ecosystems. These interactions need to be considered in remediation goals and plans.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0092-332x ISBN Medium
Area Expedition Conference
Notes Experimental diversion of acid mine drainage and the effects on a headwater stream; 2; GeoRef: 2001-017199 als Datei vorhanden 4 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17398 Serial 286
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J.
Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
Year 2006 Publication Appl. Geochem. Abbreviated Journal
Volume 21 Issue 12 Pages 2188-2200
Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry
Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0883-2927 ISBN Medium
Area Expedition Conference
Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no
Call Number CBU @ c.wolke @ 17248 Serial 44
Permanent link to this record