|   | 
Details
   web
Records
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-4456 ISBN Medium
Area Expedition Conference
Notes Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Reisinger, R.W.; Gusek, J.
Title Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming Type Journal Article
Year 1999 Publication Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 49-53
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine copper hydrogeology mine drainage United States Wyoming Ferris Haggarty Mine
Abstract An historic underground copper mine in Wyoming is discharging neutral but copper-laden water into a pristine creek. The EPA-deferred site qualifies for reclamation by the Wyoming Abandoned Mine Land (AML) program. The cleanup goal is to restore the discharge so that the creek can eventually support a trout fishery. Hydrological and geochemical investigations underground have suggested two sources of mine water: one clean and the other containing copper. Results of bench- and pilot-scale tests support the viability of using low-cost passive treatment techniques to reduce copper concentrations in the near-freezing mine discharge.
Address R.W. Reisinger, Knight Piesold LLC, Denver, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0026-5187 ISBN Medium
Area Expedition Conference
Notes Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming; 0434643; United-States 5; Geobase Approved no
Call Number CBU @ c.wolke @ 17637 Serial 263
Permanent link to this record
 

 
Author Eger, P.; Melchert, G.; Wagner, J.
Title Using passive treatment systems for mine closure – A good approach or a risky alternative? Type Journal Article
Year 2000 Publication Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 78-83
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage decommissioning mine waste open pit mine pH remediation
Abstract In 1991, LTV Steel Mining decided to close an open-pit taconite mine in northeastern Minnesota using a passive-treatment approach consisting of limiting infiltration into the stockpiles and wetland treatment to remove metals. More than 50 Mt (55 million st) of sulfide-containing waste had been stockpiled adjacent to the mine during its 30 years of operation. Drainage from the stockpiles contained elevated levels of copper, nickel, cobalt and zinc. Nickel is the major trace metal in the drainages. Before the closure, the annual median concentrations ranged from 1.5 to 50 mg/L. Copper, cobalt and zinc are also present but they are generally less than 5% of the nickel values. Median pH levels range from 5 to 7.5, but most of the stockpile drainages have pH levels greater than 6.5. Based on the chemical composition of each stockpile, a cover material was selected. The higher the potential that a stockpile had to produce acid drainage, the lower the permeability of the capping material required. Covers ranged from overburden soil removed at the mine to a flexible plastic liner. Predictions of the reduction in infiltration ranged from 40% for the native soil to more than 90% for the plastic liner. Five constructed wetlands have been installed since 1992. They have removed 60% to 90% of the nickel in the drainages. Total capital costs for all the infiltration reduction and wetlands exceeded $6.5 million, but maintenance costs are less than 1% of those for an active treatment plant. Because mine-drainage problems can continue for more than 100 years, the lower annual operating costs should pay for the construction of the wetland-treatment systems within seven years.
Address P. Eger, Minnesota Dept. of Natural Rsrces., St. Paul, MN, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0026-5187 ISBN Medium
Area Expedition Conference
Notes Using passive treatment systems for mine closure – A good approach or a risky alternative?; 2285715; United-States 19; Geobase Approved no
Call Number CBU @ c.wolke @ 17539 Serial 392
Permanent link to this record
 

 
Author Dunn, J.; Russell, C.; Morrissey, A.
Title Remediating historic mine sites in Colorado Type Journal Article
Year 1999 Publication Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 32-35
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage environmental effect remediation United States Colorado
Abstract This article provides examples of reclamation and remediation in Colorado watersheds. The projects were undertaken by the US Environmental Protection Agency (EPA) Region 8, in cooperation with the Colorado Division of Minerals and Geology (CDMG), Colorado Department of Public Health and Environment (CDPHE), US Forest Service (USFS), the Bureau of Land Management (BLM), Bureau of Reclamation (BOR) and the US Geological Survey (USGS). These agencies collaborated on the environmental problems at abandoned mines. These samples involved the interaction of surface and ground waters with sulfide-bearing rocks, mine workings and surface mine spoils that produce acid solutions charged with heavy metals that are toxic to organisms. In these examples, acid mine drainage from historic mines in Colorado has been approached cooperatively with stakeholders. Each example emphasizes one aspect of the three-stage process. These stages include characterization and prioritization, hydrologic controls and the evaluation of long-term remediation activities.
Address J. Dunn, US Environmental Protection Agency, Region 8, 999 18(th) St., Suite 500, Denver, CO 80202-2466, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0026-5187 ISBN Medium
Area Expedition Conference
Notes Remediating historic mine sites in Colorado; 0434641; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17547 Serial 398
Permanent link to this record
 

 
Author Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W.
Title Evaluation of in situ layers for treatment of acid mine drainage: A field comparison Type Journal Article
Year 2006 Publication Water Res Abbreviated Journal
Volume 40 Issue 9 Pages 1816-1826
Keywords mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment
Abstract Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0043-1354 ISBN Medium
Area Expedition Conference
Notes May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 10040 Serial 49
Permanent link to this record