|   | 
Details
   web
Records
Author Hayward, D.; Barnard, R.
Title Treatment of acid mine wastewaters. Behandlung saurer Grubenwässer Type Journal Article
Year 1993 Publication World Mining Equipment Abbreviated Journal
Volume 17 Issue 6 Pages 36-37
Keywords Wasseraufbereitung Abwasserbehandlung chemische-Abwasserreinigung Grubenentwässerung Ausfällung Schwermetalle Calciumcarbonat pH-Wert Wasserreinhaltung Grubenwasser
Abstract Überblick über einschlägige Verfahren zum Ausfällen der sauren Betandteile, Entfernen der Schwermetalle, und Einstellen des pH-Wertes auf einen Wert von 6 bis 9. Hauptsächliche Verfahren zum Ausfällen sind: Ausfällen mit Kalkhydrat (Ca(OH)2), mit Kalkstein, Calcium- oder Natriumsulfid. Durch Abtrennen des Niederschlages in einem Kläreindicker und zusätzliche Reinigung durch Filtrieren kann ein Anteil von 90% der unlöslichen Schwermetallverbindungen entfernt werden. Allgemein wird mit diesem Verfahren ein Standardgehalt von 5 mg/l erreicht. Durch zusätzliche Anwendung physikochemischer Verfahren kann der Schwermetallgehalt weiter gesenkt werden: Mikrofiltration, Umkehrosmose, Elektrodialyse, Ionenaustausch, biochemische und spezielle chemische Verfahren können je nach Eigenart der Grubenwässer verwendet werden.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0746-729x ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine wastewaters. Behandlung saurer Grubenwässer; 4737, BERG , 01.01.93; Words: 328; M9311 6018 586; 2 Seiten, 2 Bilder 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik* 3PH *Trennen fest/flüssig/gasförm. Stoffe, dispers. Stoffsysteme*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17612 Serial 358
Permanent link to this record
 

 
Author Diamond, J.M.; Bower, W.; Gruber, D.
Title Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River Type Journal Article
Year 1993 Publication Environ. Manage. Abbreviated Journal
Volume 17 Issue Pages 14
Keywords Acid mine drainage Potomac River Reservoir macroinvertebrate Fish Mayflies
Abstract The US Department of the Army, Baltimore District Corps of Engineers, oversees a long-term monitoring study to assess and evaluate effects of the Jennings-Randolph reservoir on biota in the North Branch Potomac River. The reservoir was intended, in part, to mitigate effects of acid mine drainage originating in upstream and headwater areas. The present study assessed recovery of benthos and fish in this system, six years after completion of the reservoir. Higher pH and lower iron and sulfate concentrations were observed upstream of the reservoir compared to preimpoundment conditions, suggesting better overall water quality in the upper North Branch. Water quality improved slightly directly downstream of the reservoir. However, the reservoir itself was poorly colonized by macrophytes and benthic organisms, and plankton composition suggested either metal toxicity and/or nutrient limitation. One large tributary to the North Branch and the reservoir (Stony River) was shown to have high (and possibly toxic) levels of manganese, iron, zinc, and aluminum due to subsurface coal mine drainage. Macroinvertebrate diversity and number of taxa were higher in sites downstream of the reservoir in the present study. Compared with previous years, the present study suggested relatively rapid recovery in the lower North Branch due to colonization from two major unimpacted tributaries in this system: Savage River and South Branch Potomac. Abundance of certain mayfly species across sites provided the most clear evidence of longitudinal gradients in water quality parameters and geomorphology. Fish data were consistent with macroinvertebrate results, but site-to-site variation in species composition was greater. Data collected between 1982 and 1987 suggested that certain fish species have unsuccessfully attempted to colonize sites directly downstream of the reservoir despite the more neutral pH water there. Our results show that recovery of biota in the North Branch Potomac was attributed to decreased acid inputs from mining operations and dilution from the Savage River, which contributed better water quality. Continued improvement of North Branch Potomac biota may not be expected unless additional mitigation attempts, either within the reservoir or upstream, are undertaken.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0364-152x ISBN Medium
Area Expedition Conference
Notes Feb.; Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River; New York, NY ; Heidelberg ; Berlin : Springer; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7016.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7016 Serial 79
Permanent link to this record
 

 
Author Zamzow, M.J.; Schultze, L.E.
Title Treatment of acid mine drainage using natural zeolites Type Journal Article
Year 1993 Publication International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Abbreviated Journal
Volume 1993 Issue Pages 220-221
Keywords abandoned mines; acid mine drainage; clinoptilolite; experimental studies; feasibility studies; framework silicates; hydrochemistry; mines; Nevada; northeastern Nevada; phillipsite; remediation; Rio Tinto Deposit; silicates; surface water; United States; zeolite group abandoned mines acid mine drainage clinoptilolite experimental studies feasibility studies framework silicates hydrochemistry mines Nevada northeastern Nevada phillipsite remediation Rio Tinto Deposit silicates surface water United States zeolite group
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage using natural zeolites; GeoRef: 95-04036 1 table; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9998 Serial 192
Permanent link to this record
 

 
Author Rabenhorst, M.C.; James, B.R.
Title Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report Type RPT
Year 1993 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; anaerobic environment; Appalachians; concentration; decontamination; ferric iron; iron; manganese; marshes; Maryland; metals; mires; North America; oxidation; pollutants; pollution; pore water; remediation; sulfidization; transport; United States; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor University of Maryland, W.R.R.C.C.P.M.D.U.S. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report; 1998-034327; GeoRef; English; illus. incl. 1 table University of Maryland, Water Resources Research Center, College Park, MD, United States Approved no
Call Number CBU @ c.wolke @ 6684 Serial 267
Permanent link to this record
 

 
Author Guo, F.; Yu, H.
Title Hydrogeochemistry and treatment of acid mine drainage in southern China Type Book Chapter
Year 1993 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal
Volume Issue Pages 277-283
Keywords acid mine drainage Asia bacteria chemical reactions China coal mines ecology Far East geochemistry hydrochemistry Jiangxi China lime mines oxidation pH pollution sulfides surface water trace elements water quality 22 Environmental geology 02B Hydrochemistry
Abstract Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid mine drainage associated with coal and metal sulfide deposits affects water quality in some mined areas of Southern China. Mining operations accelerate this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Some approaches to reduce the effects of acid mine drainage on water quality are adopted, and they can be divided into two aspects: (a) Man-made control technology based on long-term monitoring of acid mine drainage; and, (b) Neutralization of acidity through the addition of lime. It is important that metals in the waste water are removed in the process of neutralization. A new method for calculating neutralization dosage is applied. It is demonstrated that the calculated value is approximately equal to the actual required value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zamora, B.A.; Connolly, R.E.
Language Summary Language Original Title
Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Hydrogeochemistry and treatment of acid mine drainage in southern China; GeoRef; English; 2002-028935; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 3; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 16744 Serial 366
Permanent link to this record