|   | 
Details
   web
Records
Author Becker, B.; Graff, M.; Näveke, R.
Title Biological Treatment of Overburden from Lignite Opencast Mining in Order to Avoid Seepage of Acid Mine Water Type Journal Article
Year 1997 Publication Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal
Volume 2 Issue Pages (down) 283-291
Keywords coal mining mine water acid mine water Germany treatment laboratory studies
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological Treatment of Overburden from Lignite Opencast Mining in Order to Avoid Seepage of Acid Mine Water; 1; FG 6 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9527 Serial 460
Permanent link to this record
 

 
Author Bertrand, S.
Title Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation Type Journal Article
Year 1997 Publication Desalination Abbreviated Journal
Volume 113 Issue 2-3 Pages (down) 277-281
Keywords mine water treatment
Abstract A highly sulphated, hard water from a flooded iron mine was treated by nanofiltration for the production of drinking water (125 m(3)/h). This paper introduces the context and summarizes the configuration and operating conditions of the plant. The process performance in terms of product water quality and permeability during the first 2 years is presented and discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation; Wos:000071218200023; Times Cited: 5; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17153 Serial 134
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C.
Title The design and optimisation of active mine water treatment plants Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages (down) 273-280
Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage
Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17513 Serial 59
Permanent link to this record
 

 
Author Matsuoka, I.
Title Mine drainage treatment Type Journal Article
Year 1996 Publication Shigen to Sozai = Journal of the Mining and Materials Processing Institute of Japan Abbreviated Journal
Volume 112 Issue 5 Pages (down) 273-281
Keywords acid mine drainage; Asia; Far East; Japan; mine dewatering; mine drainage; mines; pollution; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0916-1740 ISBN Medium
Area Expedition Conference
Notes Mine drainage treatment; 1997-062437; References: 66; illus. incl. 9 tables Japan (JPN); GeoRef; Japanese Approved no
Call Number CBU @ c.wolke @ 6342 Serial 305
Permanent link to this record
 

 
Author Kleinmann, R.L.P.
Title Acid Mine Water Treatment using Engineered Wetlands Type Journal Article
Year 1990 Publication Int. J. Mine Water Abbreviated Journal
Volume 9 Issue 1-4 Pages (down) 269-276
Keywords wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum
Abstract 400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-6960 ISBN Medium
Area Expedition Conference
Notes Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17368 Serial 328
Permanent link to this record