toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fisher, T.S.R.; Lawrence, G.A. url  openurl
  Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
  Year 2006 Publication Journal of environmental engineering Abbreviated Journal  
  Volume 132 Issue 4 Pages (down) 515-526  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America  
  Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.  
  Address Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-9372 ISBN Medium  
  Area Expedition Conference  
  Notes Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17494 Serial 72  
Permanent link to this record
 

 
Author Eger, P. url  openurl
  Title Sulfate reduction for the treatment of acid mine drainage; Long term solution or short term fix? Type Journal Article
  Year 1995 Publication Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3 Abbreviated Journal  
  Volume Issue Pages (down) 515-524  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfate reduction for the treatment of acid mine drainage; Long term solution or short term fix?; Isip:A1995bg39j00052; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8887 Serial 139  
Permanent link to this record
 

 
Author Orava, D. url  openurl
  Title Evaluating alternative long-term strategies for treatment of acid mime drainage (AMD) Type Journal Article
  Year 1995 Publication Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3 Abbreviated Journal  
  Volume Issue Pages (down) 505-514  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Evaluating alternative long-term strategies for treatment of acid mime drainage (AMD); Isip:A1995bg39j00051; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8886 Serial 140  
Permanent link to this record
 

 
Author Laspidou, C.S. url  openurl
  Title Constructed wetlands technology and water quality improvement: Recent advances Type Journal Article
  Year 2005 Publication Proceeding of the 9th International Conference on Environmental Science and Technology Vol B – Poster Presentations Abbreviated Journal  
  Volume Issue Pages (down) B503-B508  
  Keywords mine water treatment  
  Abstract Today's demands for improved water quality in receiving waters are widespread and require the implementation of systems that are natural, low-cost and minimal-maintenance that could effectively treat polluted discharges. Wetlands are such systems and are recently receiving a lot of attention from scientists, ecologists and engineers, as they are deemed appropriate for reducing the impact of effluent and run-off on receiving waters. Since a large part of natural wetlands have been lost-about 53% of them in the United States from the 1780s to the 1980s-management options for improving receiving water quality, water reclamation and reuse involve the application of constructed wetlands technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed wetlands technology and water quality improvement: Recent advances; Isip:000237755500082; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16966 Serial 152  
Permanent link to this record
 

 
Author Erten-Unal, M.; Wixson, B.G. url  openurl
  Title Biotreatment and Chemical Speciation of Lead and Zinc Mine/Mill Wastewater Discharges in Missouri, USA Type Journal Article
  Year 1999 Publication Water Air Soil Pollut. Abbreviated Journal  
  Volume 116 Issue 3-4 Pages (down) 501-522  
  Keywords biotreatment lead and zinc mine wastewater MINTEQ speciation biotreatment lead and zinc mine wastewater minteq speciation trout salmo-gairdneri water  
  Abstract Continued mining development in the world's largest lead producing area has generated and increased concern over effective mine water treatment in Missouri's New Lead Belt. A new type of mine/mill wastewater treatment system was constructed which consisted of a tailings pond followed by a series of artificially constructed meandering biotreatment channels and a polishing lagoon. This system provided additional retention time and distance for the removal of heavy metals by abundant aquatic plants and sedimentation. Seasonal field sampling and analytical testing that evaluated the present system confirmed that it provided good treatment for removal of heavy metals within the company property and produced a final effluent within the state and federal regulatory guidelines. On average, greater than 95% of zinc and manganese in the drainage water were removed by the biotreatment system, while lead and copper were 50 to 60%. A chemical equilibrium model, MINTEQ, was also used to identify various species of lead and zinc in the biotreatment system. The model predicted that the major species of carbonates and hydroxides would be the predominant complexes of lead and zinc for the pH and alkalinity values reported in the biotreatment system. These results were also supported by the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-6979 ISBN Medium  
  Area Expedition Conference  
  Notes Dec.; Biotreatment and Chemical Speciation of Lead and Zinc Mine/Mill Wastewater Discharges in Missouri, USA; Isi:000083273200004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10115.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17472 Serial 16  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: