|   | 
Details
   web
Records
Author Marquardt, K.
Title Muelldeponie-Sickerabwasseraufbereitung unter Anwendung der Membrantechnik. Waste disposal-seepage waters processing by use of the membrane technique Zeitgemaesse Deponietechnik Type Book Chapter
Year 1987 Publication Stuttgarter Berichte zur Abfallwirtschaft, vol.24 Abbreviated Journal
Volume Issue Pages (down) 187-234
Keywords case studies Central Europe Europe feasibility studies filters Germany methods mine drainage osmosis pollution volatilization water pollution 21, Hydrogeology
Abstract Seepage waters from waste disposal sites are highly polluted waste waters. Waste water treatment methods such as flocculation, sedimentation, or biological treatment being usual up to now are no longer adequate to purify these waters. That is why this article investigates modern techniques such as ultra-filtration, reverse osmosis, vaporization, stripping. The following combination has proved to be effective: membrane method (two-stage reverse osmosis with tubular and package modul) for pre- and reprocessing, vaporization for solidifying the solvents, stripping in order to extract volatile matter. Methodology, usability and results are introduced and illustrated here in detail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Muelldeponie-Sickerabwasseraufbereitung unter Anwendung der Membrantechnik. Waste disposal-seepage waters processing by use of the membrane technique Zeitgemaesse Deponietechnik; GeoRef In Process; German; 2815-10; Vertieferseminar “Zeitgemaesse Deponietechnik” an der Universitaet Stuttgart, Stuttgart, Federal Republic of Germany, Mar. 25-26, 1987 References: 34; tables, charts, sketch maps Approved no
Call Number CBU @ c.wolke @ 16766 Serial 309
Permanent link to this record
 

 
Author Tabak, H.H.; Govind, R.
Title Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts Type Book Chapter
Year 2004 Publication Soil & Sediment Contamination Abbreviated Journal
Volume Issue Pages (down) 171-172
Keywords acid mine drainage; acid rock drainage; acidification; bacteria; biodegradation; bioreactors; bioremediation; decontamination; effluents; geomembranes; heavy metals; pollutants; pollution; remediation; sulfate reducing bacteria; sulfates; sulfides; Thiobacillus; waste water 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication 13 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts; GeoRef; English; 2006-064109; 19th annual international conference on Soils, sediments, and water, Amherst, MA, United States, Oct. 20-23, 2003 Approved no
Call Number CBU @ c.wolke @ 5471 Serial 13
Permanent link to this record
 

 
Author Banks, S.B.
Title The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages (down) 161-164
Keywords Wetlands and estuaries Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) constructed wetland mine drainage water treatment pollutant removal United Kingdom
Abstract The performance of mine water treatment schemes, operated under the Coal Authority's national Minewater Treatment Programme, is summarised. Most schemes for which data are available perform successfully and remove over 90% iron. Mean area-adjusted iron removal rates for reedbed components of treatment schemes, range from 1.5 to 5.5 g Fe/m2, with percentage iron removal rates ranging from 68% to 99%. In the majority of cases, calculated area-adjusted removal rates are limited by influent iron loadings, and the empirical sizing criterion for aerobic wetlands, based on American removal rates of 10 g Fe/m2day, remains a valuable tool in the initial stages of treatment system design and estimation of land area requirements. Where a number of schemes have required modification after becoming operational, due consideration must always be given to the potential for dramatic increases in influent iron loadings, and to how the balance between performance efficiency and aesthetic appearance can best be achieved. Continual review and feedback on the performance of treatment systems, and the problems encountered during design implementation, will enhance the efficiency and effectiveness of the Minewater Treatment Programme within the UK.
Address S.B. Banks, Scott Wilson Kirkpatrick/Co. Ltd., Rose Hill West, Chesterfield S40 1JF, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes; 2530421; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17519 Serial 467
Permanent link to this record
 

 
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B.
Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
Year 1997 Publication Environ. Geol. Abbreviated Journal
Volume 32 Issue 3 Pages (down) 157-174
Keywords mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage
Abstract Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.
Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Expedition Conference
Notes Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 10620 Serial 18
Permanent link to this record
 

 
Author Entrena, A.L.; Serrano, J.R.; Villoria, A.
Title Descontaminacion de aguas de mina con recuperacion de los metales contenidos en ellas. Decontamination of mine waters by recovering the metals contained within them VIII congreso internacional de Mineria y metalurgia; tomo 8. VIII international conference on Mining and metallurgy; Volume 8 Type Book Chapter
Year 1988 Publication Congreso Internacional de Mineria y Metalurgia, vol.8 Abbreviated Journal
Volume Issue Pages (down) 156-173
Keywords actinides; Castilla y Leon Spain; decontamination; Europe; Iberian Peninsula; iron minerals; Leon region; metals; mines; pollution; recovery; remediation; Salamanca Spain; Southern Europe; Spain; uranium; water pollution 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Asociacion Nacional de Ingenieros de Minas de Espana, O. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Descontaminacion de aguas de mina con recuperacion de los metales contenidos en ellas. Decontamination of mine waters by recovering the metals contained within them VIII congreso internacional de Mineria y metalurgia; tomo 8. VIII international conference on Mining and metallurgy; Volume 8; GeoRef; Spanish; 1997-066026; 8. Congreso internacional de Mineria y metalurgia, Oviedo, Spain, 1988 4 tables Approved no
Call Number CBU @ c.wolke @ 6774 Serial 389
Permanent link to this record