|   | 
Details
   web
Records
Author Kleinmann, R.; Majumdar, S.K.; Miller, E.W.; Brenner, F.J.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages (down) 497-509
Keywords abandoned mines; acid mine drainage; coal mines; constructed wetlands; drainage; environmental effects; mines; mitigation; pollutants; pollution; remediation; surface water; toxic materials; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher The Pennsylvania Academy of Science Book Publications Place of Publication 25 Editor
Language Summary Language Original Title
Series Editor Series Title Ecology of wetlands and associated systems Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructing wetlands for passive treatment of coal mine drainage; 2002-024212; GeoRef; English; References: 27; illus. incl. 2 tables United States (USA) Approved no
Call Number CBU @ c.wolke @ 6210 Serial 330
Permanent link to this record
 

 
Author Smith, I.J.H.
Title AMD treatment, it works but are we using the right equipment? Type Journal Article
Year 2000 Publication Tailings and mine waste ' Abbreviated Journal
Volume Issue Pages (down) 419-427
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage conference proceedings methodology mine drainage remediation waste management
Abstract For the past 40 years various approaches have been developed to treat acid waters coming from abandoned as well as operating mining operations. System designs have evolved to meet increasingly stringent discharge permit limits for treated water, as well as to provide solid disposal within economic constraints. A treatment system for remediation of acid mine drainage (AMD) or acid groundwater (AG) requires two main steps: 1. The addition of chemicals to precipitate dissolved metals contained in the waters, and if necessary, to coagulate the precipitated solids ahead of physical separation. 2. Physical separation of the precipitated solids from the water so the water can be lawfully discharged from the site. Choosing the appropriate technology and equipment results in the most efficient plant design, the lowest capital outlay, and minimum operating cost. The goal of these plants is to discharge liquids and solids able to meet standards. The separation of solids from liquids can be achieved through various means, including gravity settling, flotation, mechanical dewatering, filtration and evaporation. As important as the liquid solids separation unit operations are, they are driven by the chemistry of the water to be treated. The content of the dissolved solids will influence the quality and quantity of the solids produced during precipitation. Thus the two aspects must be integrated, with chemistry first, then mechanical engineering. This presentation will provide an overview of a number of liquid solids separation tools currently being used to treat AMD-AG at several sites in the USA. It will also discuss how their operations are impacted by the chemistry of their particular acid water feeds. The tools used include clarifier-thickeners, solids contact clarifiers, dissolved air flotation, polishing filters, membrane filters, and mechanical dewatering devices (belt and filter presses, vacuum filters, and driers).
Address J.H. Smith III, SEPCO Incorporated, Fort Collins, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Book; Conference-Paper; AMD treatment, it works but are we using the right equipment?; 2263351; Using Smart Source Parsing 00-Proceedings-of-the-7th-international-conference-Fort-Collins-January- 2000 Netherlands; Geobase Approved no
Call Number CBU @ c.wolke @ 17541 Serial 237
Permanent link to this record
 

 
Author Bennett, J.W.; Timms, G.P.; Ritchie, A.I.M.
Title The effectiveness of the covers on waste rock dumps at Rum Jungle and the impact in the long term Type Journal Article
Year 1999 Publication Mining into the next century : environmental opportunities and challenges Proceedings of the 24th annual environmental workshop Townsville October Abbreviated Journal
Volume Issue Pages (down) 379-388
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage containment barrier mine drainage mine waste
Abstract Covers are widely used as a means of controlling pollutant generation from sulfidic waste piles. To date, there has been little data available to test the effectiveness of such covers. Monitoring of two waste rock dumps at Rum Jungle over more than fifteen years has provided the opportunity to assess cover effectiveness in the medium term. For the first 9 years the infiltration rate through the cover on Whites dump was less than the design figure of 5 per cent of rainfall. In subsequent years, however, the rate has increased to between 5 and 10 per cent. In the first six years the infiltration rate through the cover on Intermediate dump was also less than 5 per cent. Unfortunately, further measurements had to be abandoned due to equipment malfunction in this dump. Oxygen and temperature profiles measured below the cover have been used to estimate the overall oxidation rate in the two dumps. This is between 30 and 50 per cent of the oxidation rate prior to installation of the cover. The effect these results have on pollutant loads in drainage in the long term depends on the nature of the control mechanisms in the system. If pollutant concentrations in drainage are determined by secondary mineralisation within the dumps then pollutant loads in the long term will be essentially proportional to any further increase in the infiltration rate. If the pollutant loads in drainage are largely determined by the overall oxidation rates then we can expect the pollutant loads from the two dumps to increase in the long term to a level about one third to one half of that prior to rehabilitation. In this context, 'long term' means about 40 years after installation of the cover system. Given the implications this work has for the use of soil covers, the following additional studies should be undertaken: A measurement program to quantify the pollution loads from Intermediate and Whites waste rock dumps. A program of computation, backed by acquisition of mineralogical data on the wastes, to address the question of controls on concentration and load in effluent from the two dumps. A program to determine the reason for the deteriorating performance of the covers at Rum Jungle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Book; Conference-Paper; The effectiveness of the covers on waste rock dumps at Rum Jungle and the impact in the long term; 2241668; Using Smart Source Parsing 1999 Australia; Geobase Approved no
Call Number CBU @ c.wolke @ 17545 Serial 453
Permanent link to this record
 

 
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages (down) 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4456 ISBN Medium
Area Expedition Conference
Notes Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C.
Title The design and optimisation of active mine water treatment plants Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages (down) 273-280
Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage
Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17513 Serial 59
Permanent link to this record