|   | 
Details
   web
Records
Author Guo, F.; Yu, H.
Title Hydrogeochemistry and treatment of acid mine drainage in southern China Type Book Chapter
Year 1993 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal
Volume Issue Pages (down) 277-283
Keywords acid mine drainage Asia bacteria chemical reactions China coal mines ecology Far East geochemistry hydrochemistry Jiangxi China lime mines oxidation pH pollution sulfides surface water trace elements water quality 22 Environmental geology 02B Hydrochemistry
Abstract Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid mine drainage associated with coal and metal sulfide deposits affects water quality in some mined areas of Southern China. Mining operations accelerate this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Some approaches to reduce the effects of acid mine drainage on water quality are adopted, and they can be divided into two aspects: (a) Man-made control technology based on long-term monitoring of acid mine drainage; and, (b) Neutralization of acidity through the addition of lime. It is important that metals in the waste water are removed in the process of neutralization. A new method for calculating neutralization dosage is applied. It is demonstrated that the calculated value is approximately equal to the actual required value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zamora, B.A.; Connolly, R.E.
Language Summary Language Original Title
Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Hydrogeochemistry and treatment of acid mine drainage in southern China; GeoRef; English; 2002-028935; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 3; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 16744 Serial 366
Permanent link to this record
 

 
Author Nairn, R.W.; Hedin, R.S.
Title Designing wetlands for the treatment of polluted coal mine drainage Type Book Chapter
Year 1992 Publication Wetlands; proceedings of the 13th annual conference; Society of Wetland Scientists Abbreviated Journal
Volume Issue Pages (down) 224-229
Keywords acidic composition; alkalinity; Appalachian Plateau; Appalachians; biodegradation; carbonate rocks; chemical properties; coal mines; constructed wetlands; construction; limestone; mine drainage; mines; North America; Pennsylvania; pollutants; pollution; reclamation; remediation; sedimentary rocks; United States; western Pennsylvania; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Landin, M.C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Designing wetlands for the treatment of polluted coal mine drainage; GeoRef; English; 1996-062750; 13th annual conference of the Society of Wetland Scientists, New Orleans, LA, United States, May 31-June 6, 1992 References: 7 Approved no
Call Number CBU @ c.wolke @ 6720 Serial 289
Permanent link to this record
 

 
Author Wiseman, I.M.; Edwards, P.J.; Rutt, G.P.
Title Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages (down) 221-230
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects Wetlands and estuaries geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) geographical abstracts: physical geography hydrology (71 6 8) coal mine recovery aquatic ecosystem constructed wetland water treatment mine drainage abandoned mine
Abstract Seven kilometres of the River Pelenna in South Wales were impacted for approximately 30 years by discharges from abandoned coal mines. Elevated iron and low pH caused significant ochreous staining and had detrimental effects on the river ecology. The River Pelenna Mine water project constructed a series of passive wetland treatment systems to treat these discharges. Monitoring of the performance and environmental benefits of these has been undertaken as part of an Environment Agency R&D project. This project has assessed the changes in water quality as well as monitoring populations of invertebrates, fish and birds between 1993 and 2001. Performance data from the wetlands show that on average the three systems are removing between 82 and 95% of the iron loading from the mine waters. In the rivers downstream, the dissolved iron concentration has dropped to below the Environmental Quality Standard (EQS) of 1 mg/L for the majority of the time. Increases in pH downstream of the discharges have also been demonstrated. Trout (Salmo trutta) recovered quickly following mine water treatment, returning the next year to areas that previously had no fish. Intermittent problems with overflows from the treatment systems temporarily depleted the numbers, but the latest data indicate a thriving population. The overflow problems and also background episodes of acidity have affected the recovery of the riverine invertebrates. However, there have been gradual improvements in the catchment, and in the summer of 2001 most sites held faunas which approached those found in unpolluted controls. Recovery of the invertebrate fauna is reflected in marked increases in the breeding success of riverine birds between 1996 and 2001. This study has shown that constructed wetlands can be an effective, low cost and sustainable solution to ecological damage caused by abandoned mine drainage.
Address I.M. Wiseman, Environment Agency Wales, 19 Penyfai Lane, Furnace, Llanelli SA15 4EL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands; 2530429; United-Kingdom 25; Geobase Approved no
Call Number CBU @ c.wolke @ 17516 Serial 206
Permanent link to this record
 

 
Author Rukin, N.
Title Whittle mine water treatment system: In-river attenuation of manganese Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages (down) 137-144
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) river water natural attenuation manganese water treatment mine drainage coal mine
Abstract Much work has been undertaken on the design of treatment systems to remove iron from ochreous mine water discharges. Unlike iron, manganese removal is far more difficult and generally requires active chemical dosing rather than passive treatment. The need for manganese removal can therefore significantly change the economics, management attention and sustainability of a site. Understanding natural attenuation of manganese in river systems is therefore key to deciding whether (active) manganese treatment is needed to protect downstream receptors. Nuttall (2002, this volume) describes the effectiveness of the passive treatment system at Whittle in reducing both iron and manganese concentrations in ochreous mine waters. This paper discusses the results of in-river monitoring and provides evidence for manganese removal downstream of the discharge point. In addition to dilution, attenuation appears to be in the order of 20 to 50%, depending on relative rates of mine water discharge and river flows. Such attenuation means that active treatment may not be needed for the long-term operation of the Whittle scheme. Operation of the scheme commenced in July 2002, with monitoring to further examine evidence for manganese attenuation and any impact on the ecology of the recipient watercourses.
Address N. Rukin, Entec UK Ltd., 160-162 Abbey Foregate, Shrewsbury SY2 6BZ, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Whittle mine water treatment system: In-river attenuation of manganese; 2530418; United-Kingdom 2; Geobase Approved no
Call Number CBU @ c.wolke @ 17521 Serial 257
Permanent link to this record
 

 
Author Robinson, J.D.F.
Title Wetland treatment of coal-mine drainage Type Journal Article
Year 1998 Publication Coal International Abbreviated Journal
Volume 246 Issue 3 Pages (down) 114-115
Keywords coal mines; Europe; mine drainage; mines; pH; pollution; UK Coal Authority; United Kingdom; water; water treatment; Western Europe; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1357-6941 ISBN Medium
Area Expedition Conference
Notes Wetland treatment of coal-mine drainage; 2000-013457; References: 1; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6129 Serial 260
Permanent link to this record