|   | 
Details
   web
Records
Author Perry, A.; Kleinmann, R.L.P.
Title The use of constructed wetlands in the treatment of acid mine drainage Type Journal Article
Year 1991 Publication Natural Resources Forum Abbreviated Journal
Volume 15 Issue 3 Pages (down) 178-184
Keywords quality standard water treatment constructed wetland pond system acid mine drainage USA 1 Geography
Abstract US government regulations require that all effluents from industrial operations, including mining, meet certain water quality standards. Constructed wetlands have proven to be useful in helping to attain those standards. Application of this biotechnology to mine water drainage can reduce water treatment costs and improve water quality in streams and rivers adversely affected by acidic mine water drainage from abandoned mines. Over 400 constructed wetland water treatment systems have been built on mined lands largely as a result of research by the US Bureau of Mines. Wetlands are passive biological treatment systems that are relatively inexpensive to construct and require minimal maintenance. Chemical treatment costs are reduced sufficiently to repay the cost of construction in less than a year. The mine waste water is typically treated in a series of excavated ponds that resemble small marsh areas. The ponds are engineered to facilitate bacterial oxidation of iron. Ideally, the water then flows through a composted organic substrate supporting a population of sulphate-reducing bacteria which raises the pH. Constructed wetlands in the US are described – their history, functions, construction methodologies, applicabilities, limitations and costs. -Authors
Address US Department of the Interior, Bureau of Mines, 2401 E Street, NW Washington, DC 20241, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The use of constructed wetlands in the treatment of acid mine drainage; (0895945); 92h-01979; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17569 Serial 272
Permanent link to this record
 

 
Author Kringel, R.
Title Untersuchungen zur Verminderung von Auswirkungen der Pyritoxidation in Abraumsedimenten des Rheinischen Braunkohlenreviers auf die Chemie des Grundwassers Type Journal Article
Year 1998 Publication Abbreviated Journal
Volume Issue Pages (down) 178
Keywords Braunkohlentagebau Pyrit Oxidation Grubenwasser Gewässerversauerung Neutralisation <Chemie>
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 3-931713-52-0 ISBN Medium
Area Expedition Conference
Notes Bochum, Univ., Diss.; Untersuchungen zur Verminderung von Auswirkungen der Pyritoxidation in Abraumsedimenten des Rheinischen Braunkohlenreviers auf die Chemie des Grundwassers; Darmstadt : DDD, Dr. und Verl.; Bochum, Univ., Diss.; Opac Approved no
Call Number CBU @ c.wolke @ 6941 Serial 326
Permanent link to this record
 

 
Author Gatzweiler, R.
Title Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, Eastern Thuringia Type Journal Article
Year 2001 Publication Waste Management Abbreviated Journal
Volume 21 Issue 2 Pages (down) 175-184
Keywords mine water treatment
Abstract At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113 000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation. (C) 2001 Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, Eastern Thuringia; Wos:000166676900008; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17047 Serial 127
Permanent link to this record
 

 
Author Skousen, J.G.
Title An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs Type Journal Article
Year 1991 Publication Environmental Management for the 1990s Abbreviated Journal
Volume Issue Pages (down) 173-178
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs; Isip:A1991bs89e00024; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9041 Serial 148
Permanent link to this record
 

 
Author Gerth, A.; Kießig, G.
Title Type Book Whole
Year 2001 Publication Abbreviated Journal
Volume Issue Pages (down) 173-180
Keywords mining uranium mining passive treatment Saxony mine water treatment
Abstract Treatment of radioactively-contaminated and metal-laden mine waters and of seepage fiom tailings ponds and waste rock piles is among the key issues facing WISMUT GmbH in their task to remediate the legacy of uranium mining and processing in the Free States of saxony and rhuringia, Federal Republic of Germany. Generally, contaminant loads of feed waters wn aimnisn over time. At a certain level of costs for the removal of one contaminant unit, continued operation of conventional water treatment plants can hardly be justified any longer. As treatment is still required for water protection, there is an urgent need for-the development and implementation of more cost efficient technologies. WISMUT GmbH and BioPlanta GmbH have studied the suitability of helophye species for contaminant removal from mine waters. In a fust step, original waters were used for an in vitro bioassay. The test results allowed for the determination of the effects of biotic and abiotic factors on helophy'tes'tolerancer ange, growth, and uptake capability of radionuclides and metals. Test series were carried out using Phiagmites australis, Carex disticha, Typha latifolia, and Juncus effusus. Relevant cont-aminant components of the mine waters under investigation included uraniunl iron, arsenic, manganese, nickel, and copper. Investigations led to a number of recommendations conceming plant selection for specific water treatment needs. In a second step, based on these results, a constructed wetland was built in l99g as a pilot plant for the treatment of flood waters liom the pöhla-Tellerhäuser mine and went on-line. Relevant constituents of the neutral flood waters include radium, iron, and arsenic. This wetland specifically uses both physico-chemical and microbiological processes as well as contaminant accumulation by helophytes to achieve the treatment objectives. with the pilot plant in operation for three years now, average removal rates achieved are 95 Yo for kon, 86 yo for arsenic, and 75 % for raäium. WISMUT GmbH intends to put a number of other projects of passive/biological mine water treatment into operation before the end of 2001_
Address
Corporate Author Thesis
Publisher Battelle Press Place of Publication (6)5 Editor Leeson, A.
Language Summary Language Original Title
Series Editor Series Title Phytoremediation, wetlands and sediments Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1-57477-115-9 Medium
Area Expedition Conference
Notes Passive/Biological Treatment of Waters contaminated by Uranium Mining; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 4 Tab. Approved no
Call Number CBU @ c.wolke @ 17345 Serial 372
Permanent link to this record