|   | 
Details
   web
Records
Author Wolkersdorfer, C.; Younger, P.L.
Title Passive mine water treatment as an alternative to active systems Type Journal Article
Year 2002 Publication Grundwasser Abbreviated Journal
Volume 7 Issue 2 Pages (up) 67-77
Keywords Groundwater quality geographical abstracts: physical geography hydrology (71 6 11) water treatment groundwater pollution water quality mine
Abstract For the treatment of contaminated mine waters reliable treatment methods with low investment and operational costs are essential. Therefore, passive treatment systems recently have been installed in Great Britain and in Germany (e.g. anoxic limestone drains, constructed wetlands, reactive barriers, roughing filters) and during the last eight years such systems successfully treated mine waters, using up to 6 ha of space. In some cases with highly contaminated mine water, a combination of active and passive systems should be applied, as in any case the water quality has to reach the limits. Because not all the processes of passive treatment systems are understood in detail, current research projects (e.g. EU-project PIRAMID) were established to clarify open questions.
Address Dr. Ch. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, Gustav-Zeuner-Str. 12, Freiberg/Saichen 09596, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1430-483x ISBN Medium
Area Expedition Conference
Notes Passive mine water treatment as an alternative to active systems; 2428851; Passive Grubenwasserreinigung als Alternative zu aktiven Systemen. Germany 51; Geobase Approved no
Call Number CBU @ c.wolke @ 17530 Serial 202
Permanent link to this record
 

 
Author Scholz, M.
Title Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper Type Journal Article
Year 2002 Publication Bioresource Technology Abbreviated Journal
Volume 83 Issue 2 Pages (up) 71-79
Keywords mine water treatment
Abstract The aim of this study was to investigate the treatment efficiency of passive vertical-flow wetland filters containing different macrophytes (Phragmites and/or Typha) and granular media with different adsorption capacities. Gravel, sand, granular activated carbon, charcoal and Filtralite (light expanded clay) were used as filter media. Different concentrations of lead and copper sulfate were added to polluted urban stream inflow water to simulate pretreated mine wastewater. The relationships between growth media, microbial and plant communities as well as the reduction of predominantly lead, copper and five-day biochemical oxygen demand (BOD5) were investigated. An analysis of variance showed that concentration reductions (mg 1(-1)) of lead, copper and BOD5 were significantly similar for the six experimental wetlands. Microbial diversity was low due to metal pollution and similar for all filters. There appears to be no additional benefit in using adsorption media and macrophytes to enhance biomass performance during the first 10 months of operation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper; Wos:000175574600001; Times Cited: 5; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17031 Serial 121
Permanent link to this record
 

 
Author Simmons, J.; Ziemkiewicz, P.; Black, D.C.
Title Use of Steel Slag Leach Beds for the Treatment of Acid Mine Drainage Type Journal Article
Year 2002 Publication Mine Water Env. Abbreviated Journal
Volume 21 Issue 2 Pages (up) 91-99
Keywords acid mine drainage Beaver Creek check dam leach beds leaching metal sequestration mine water leaching procedure open limestone channel steel slag West Virginia
Abstract Steel slag from the Waylite steel-making plant in Bethlehem, Pennsylvania was leached with acidic mine drainage (AMD) of a known quality using an established laboratory procedure. Leaching continued for 60 cycles and leachates were collected after each cycle. Results indicated that the slag was very effective at neutralizing acidity. The AMD/slag leachates contained higher average concentrations of Ba, V, Mn, Cr, As, Ag, and Se and lower average concentrations of Sb, Fe, Zn, Be, Cd, Tl, Ni, Al, Cu, and Pb than the untreated AMD. Based on these tests, slag leach beds were constructed at the abandoned McCarty mine site in Preston County, West Virginia. The leach beds were constructed as slag check dams below limestone-lined settling basins. Acid water was captured in limestone channels and directed into basins to leach through the slag dams and discharge into a tributary of Beaver Creek. Since installation in October 2000, the system has been consistently producing net alkaline, pH 9 water. The treated water is still net alkaline and has a neutral pH after it encounters several other acidic seeps downstream.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Use of Steel Slag Leach Beds for the Treatment of Acid Mine Drainage; 1; FG 20 Abb., 4 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17421 Serial 249
Permanent link to this record
 

 
Author Kuyucak, N.
Title Acid mine drainage prevention and control options Type Journal Article
Year 2002 Publication CIM Bull. Abbreviated Journal
Volume 95 Issue 1060 Pages (up) 96-102
Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management
Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.
Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17532 Serial 64
Permanent link to this record
 

 
Author Wiseman, I.
Title Constructed wetlands for minewater treatment Type RPT
Year 2002 Publication Abbreviated Journal
Volume Issue Pages (up) 125
Keywords Sewage Ecology Constructed wetlands — Wales Mineral industries — Waste disposal Mine water Water quality management — Wales Pelenna minewaters Water pollution & oil pollution Hydrology & limnology
Abstract
Address
Corporate Author Thesis
Publisher Environment Agency Place of Publication Bristol, England Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed wetlands for minewater treatment; Opac Approved no
Call Number CBU @ c.wolke @ 7122 Serial 207
Permanent link to this record