|   | 
Details
   web
Records
Author Sato, D.; Tazaki, K.
Title Calcification treatment of mine drainage and depositional formula of heavy metals Type Journal Article
Year 2000 Publication Chikyu Kagaku = Earth Science Abbreviated Journal
Volume 54 Issue 5 Pages (down) 328-336
Keywords acid mine drainage Asia calcification deposition ettringite Far East heavy metals Ishikawa Japan Japan lime Ogoya Mine pollution sulfates waste water water treatment 22, Environmental geology
Abstract Depositional formula of heavy metals after disposal of the mine drainage from the Ogoya Mine in Ishikawa Prefecture, Japan, was mineralogically investigated. Strong acidic wastewater (pH 3.5) from pithead of the mine contains high concentration of heavy metals. In this mine, neutralizing coagulation treatment is going on by slaked lime (calcium hydroxides: Ca(OH) (sub 2) ). Core samples were collected at disposal pond to which the treated wastewater flows. The core samples were divided into 44 layers based on the color variation. The mineralogical and chemical compositions of each layer were analyzed by an X-ray powder diffractometer (XRD), an energy dispersive X-ray fluorescence analyzer (ED-XRF) and a NCS elemental analyzer. The upper parts are rich in brown colored layers, whereas discolored are the deeper parts. The color variation is relevant to Fe concentration. Brown colored core sections are composed of abundant hydrous ferric oxides with heavy metals, such as Cu, Zn, and Cd. On the other hand, S concentration gradually increases with depth. XRD data indicated that calcite decreases with increasing depth, and ettringite is produced at the deeper parts. Cd concentration shows similar vertical profile to those of calcite and ettringite. The results revealed that hydrous ferric oxides, calcite and ettringite are formed on deposition, whereby incorporating the heavy metals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0366-6611 ISBN Medium
Area Expedition Conference
Notes Calcification treatment of mine drainage and depositional formula of heavy metals; 2001-032610; References: 19; illus. incl. 1 table, sketch map Japan (JPN); GeoRef; Japanese Approved no
Call Number CBU @ c.wolke @ 16543 Serial 252
Permanent link to this record
 

 
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages (down) 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4456 ISBN Medium
Area Expedition Conference
Notes Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Mitchell, P.
Title Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil Type Journal Article
Year 2000 Publication Environmental Issues and Management of Waste in Energy and Mineral Production Abbreviated Journal
Volume Issue Pages (down) 307-314
Keywords mine water treatment
Abstract Klean Earth Environmental Company (KEECO) has developed the Silica Micro Encapsulation (SME) technology to treat heavy metals and radionuclides in water and soil. Unlike conventional neutralization/precipitation methods, SME encapsulates the contaminants in a permanent silica matrix resistant to degradation under even extreme environmental conditions. Encapsulated metals and radionuclides are effectively immobilized, minimising the potential for environmental contamination and impacts on human or ecosystem health. The effectiveness of SME has been proven through independent reviews, laboratory and field trials and commercial contracts, and the technology can be used to control and prevent acid drainage and the transport of soluble metals from mine sites, tailings areas, landfills and industrial sites. Successful demonstrations in the treatment of sediments and in brownfield redevelopment, treatment of metal-finishing wastewaters, and control of hazardous, low-level, and mixed waste at DOE/DOD sites and commercial nuclear power plants have also been undertaken. This paper describes the reactions involved in the SME process, the methods by which SME chemicals are introduced to various media, and recent project applications relevant to the cost effective remediation and prevention of environmental problems arising from energy and mineral production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil; Isip:000088357300049; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17088 Serial 174
Permanent link to this record
 

 
Author Watzlaf, G.R.; Schroeder, K.T.; Kairies, C.L.
Title Type Book Whole
Year 2000 Publication Abbreviated Journal
Volume Issue Pages (down) 262-274
Keywords passive treatment anoxic limestone drains wetlands sulfate reduction successive alkalinity-producing systems acid mine drainage ALD SAPS RAPS
Abstract Ten passive treatment systems, located in Pennsylvania and Maryland, have been intensively monitored for up to ten years. Influent and effluent water quality data from ten anoxic limestone drains (ALDs) and six reducing and alkalinity-producing systems (RAPS) have been analyzed to determine long-term performance for each of these specific unit operations. ALDs and RAPS are used principally to generate alkalinity, ALDs are buried beds of limestone that add alkalinity through dissolution of calcite. RAPS add alkalinity through both limestone dissolution and bacterial sulfate reduction. ALDs that received mine water containing less than 1 mg/L of both ferric iron and aluminum have continued to produce consistent concentrations of alkalinity since their construction. However, an ALD that received 20 mg/L of aluminum experienced a rapid reduction in permeability and failed within five months. Maximum levels of alkalinity (between 150 and 300 m&) appear to be reached after I5 hours of retention. All but one RAPS in this study have been constructed and put into operation only within the past 2.5 to 5 years. One system has been in operation and monitored for more than nine years. AIkalinity due to sulfate reduction was highest during the first two summers of operation. Alkalinity due to a limestone dissolution has been consistent throughout the life of the system. For the six RAPS in this study, sulfate reduction contributed an average of 28% of the total alkalinity. Rate of total alkalinity generation range from 15.6 gd''rn-'to 62.4 gd-'mL2 and were dependent on influent water quality and contact time.
Address
Corporate Author Thesis
Publisher Place of Publication Tampa Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 17th Annual National Meeting – American Society for Surface Mining and Reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Long-Term Perpormance of Alkalinity-Producing Passive Systems for the Treatment of Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 5 Tab. Approved no
Call Number CBU @ c.wolke @ 17440 Serial 216
Permanent link to this record
 

 
Author Frisch, K.-R.
Title Type Book Whole
Year 2000 Publication Abbreviated Journal
Volume Issue Pages (down) 258 pp
Keywords Grubenwasser Gewässerversauerung Versatz <Bergbau> Neutralisation <Chemie> Umweltbilanz
Abstract
Address
Corporate Author Thesis
Publisher Clausthal-Zellerfeld: Papierflieger Place of Publication Clausthal-Zellerfeld Editor
Language Summary Language Original Title
Series Editor Series Title Die Verringerung der Sauerwasserbildung im untertägigen Bergbau durch Versatz Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-89720-397-9 Medium
Area Expedition Conference
Notes Die Verringerung der Sauerwasserbildung im untertägigen Bergbau durch Versatz; Clausthal-Zellerfeld: Papierflieger; Clausthal, Techn. Univ., Diss.; Opac Approved no
Call Number CBU @ c.wolke @ 6939 Serial 373
Permanent link to this record