toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Matlock, M.M.; Howerton, B.S.; Atwood, D.A. url  openurl
  Title Chemical precipitation of heavy metals from acid mine drainage Type Journal Article
  Year 2002 Publication Water Res Abbreviated Journal  
  Volume 36 Issue 19 Pages (down) 4757-4764  
  Keywords mine water treatment BDET Acid mine drainage Water treatment Remediation Heavy metals Chemical precipitation Mercury Iron  
  Abstract The 1,3-benzenediamidoethanethiol dianion (BDET, known commercially as MetX) has been developed to selectively and irreversibly bind soft heavy metals from aqueous solution. In the present study BDET was found to remove >90% of several toxic or problematic metals from AMD samples taken from an abandoned mine in Pikeville, Kentucky. The concentrations of metals such as iron, may be reduced at pH 4.5 from 194 ppm to below 0.009 ppm. The formation of stoichiomietric BDET-metal precipitates in this process was confirmed using X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and infrared spectroscopy (IR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Nov.; Chemical precipitation of heavy metals from acid mine drainage; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/15005.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 15005 Serial 48  
Permanent link to this record
 

 
Author Jarvis, A.P.; Younger, P.L. url  openurl
  Title Passive treatment of ferruginous mine waters using high surface area media Type Journal Article
  Year 2001 Publication Water Res. Abbreviated Journal  
  Volume 35 Issue 15 Pages (down) 3643-3648  
  Keywords mine water treatment passive treatment mine water accretion oxidation iron manganese water treatment  
  Abstract Rapid oxidation and accretion of iron onto high surface area media has been investigated as a potential passive treatment option for ferruginous, net-alkaline minewaters. Two pilot-scale reactors were installed at a site in County Durham, UK. Each 2.0m high cylinder contained different high surface area plastic trickling filter media. Ferruginous minewater was fed downwards over the media at various flow-rates with the objective of establishing the efficiency of iron removal at different loading rates. Residence time of water within the reactors was between 70 and 360s depending on the flow-rate (1 and 12l/min, respectively). Average influent total iron concentration for the duration of these experiments was 1.43mg/l (range 1.08-1.84mg/l; n=16), whilst effluent iron concentrations averaged 0.41mg/l (range 0.20-1.04mg/l; n=15) for Reactor A and 0.38mg/l (range 0.11-0.93mg/l; n=16) for Reactor B. There is a strong correlation between influent iron load and iron removal rate. Even at the highest loading rates (approximately 31.6g/day) 43% and 49% of the total iron load was removed in Reactors A and B, respectively. At low manganese loading rates (approximately 0.50-0.90g/day) over 50% of the manganese was removed in Reactor B. Iron removal rate (g/m3/d) increases linearly with loading rate (g/day) up to 14g/d and the slope of the line indicates that a mean of 85% of the iron is removed. In conclusion, it appears that the oxidation and accretion of ochre on high surface area media may be a promising alternative passive technology to constructed wetlands at certain sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Oct; Passive treatment of ferruginous mine waters using high surface area media; 9; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9698.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9698 Serial 27  
Permanent link to this record
 

 
Author Benner, S.G. url  openurl
  Title Geochemistry of a permeable reactive barrier for metals and acid mine drainage Type Journal Article
  Year 1999 Publication Environmental Science & Technology Abbreviated Journal  
  Volume 33 Issue 16 Pages (down) 2793-2799  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier, designed to remove metals and generate alkalinity by promoting sulfate reduction and metal sulfide precipitation, was installed in August 1995 into an aquifer containing effluent from mine tailings. Passage of groundwater through the barrier results in striking improvement in water quality. Dramatic changes in concentrations of SO4 (decrease of 2000-3000 mg/L), Fe (decrease of 270-1300 mg/L), trace metals (e.g., Ni decreases 30 mg/L), and alkalinity (increase of (800-2700 mg/L) are observed. Populations of sulfate reducing bacteria are 10 000 times greater, and bacterial activity, as measured by dehydrogenase activity, is 10 rimes higher within the barrier compared to the up-gradient aquifer. Dissolved sulfide concentrations increase by 0.2-120 mg/ L, and the isotope S-34 is enriched relative to S-32 in the dissolved phase SO42- within the barrier. Water chemistry, coupled with geochemical speciation modeling, indicates the pore water in the barrier becomes supersaturated with respect to amorphous Fe sulfide. Solid phase analysis of the reactive mixture indicates the accumulation of Fe monosulfide precipitates. Shifts in the saturation states of carbonate, sulfate, and sulfide minerals and most of the observed changes in water chemistry in the barrier and down-gradient aquifer can be attributed, either directly or indirectly, to bacterially mediated sulfate reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Geochemistry of a permeable reactive barrier for metals and acid mine drainage; Wos:000082074500017; Times Cited: 57; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17115 Serial 132  
Permanent link to this record
 

 
Author Jong, T. url  openurl
  Title Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
  Year 2006 Publication Water Research Abbreviated Journal  
  Volume 40 Issue 13 Pages (down) 2561-2571  
  Keywords mine water treatment  
  Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16929 Serial 108  
Permanent link to this record
 

 
Author Sasaki, K. url  openurl
  Title Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs Type Journal Article
  Year 2006 Publication Mater. Trans. Abbreviated Journal  
  Volume 47 Issue 10 Pages (down) 2457-2461  
  Keywords mine water treatment  
  Abstract A Mn-oxidizing fungus was isolated from a constructed wetland of Hokkaido (Japan), which is receiving the Mn-impacted drainage, and genetically and morphologically identified as Paraconiothyrium sp.-like strain. The optimum pHs were 6.45-6.64, where is more acidic than those of previously reported Mn-oxidizing fungi. Too much nutrient inhibited fungal Mn-oxidation, and too little nutrient also delayed Mn oxidation even at optimum pH. In order to achieve the oxidation of high concentrations of Mn like mine drainage containing several hundreds g-m(-3) of Mn, it is important to find the best mix ratio among the initial Mn concentrations, inocolumn size and nutrient concentration. The strain has still Mn-tolerance with more than 380 g-m(-3) of Mn, but high Mn(II) oxidation was limited by pH control and supplied nutrient amounts. The biogenic Mn deposit was poorly crystallized birnessite. The strain is an unique Mn-oxidizing fungus having a high Mn tolerance and weakly acidic tolerance, since there has been no record about the property of the strain. There is a potentiality to apply the strain to the environmental bioremediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs; Wos:000242429300002; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16940 Serial 103  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: