toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N. url  openurl
  Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
  Year 2001 Publication J. Environ. Qual. Abbreviated Journal  
  Volume 30 Issue 5 Pages (down) 1710-1719  
  Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology  
  Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0047-2425 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5703 Serial 76  
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D. url  openurl
  Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
  Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal  
  Volume Issue Pages (down) 1545  
  Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology  
  Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.  
  Address  
  Corporate Author Thesis  
  Publisher AAPG Bulletin Place of Publication 81 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no  
  Call Number CBU @ c.wolke @ 16630 Serial 70  
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L. openurl 
  Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
  Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal  
  Volume Issue Pages (down) 579-584  
  Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology  
  Abstract The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no  
  Call Number CBU @ c.wolke @ 16526 Serial 290  
Permanent link to this record
 

 
Author Kleinmann, R.; Majumdar, S.K.; Miller, E.W.; Brenner, F.J. openurl 
  Title Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages (down) 497-509  
  Keywords abandoned mines; acid mine drainage; coal mines; constructed wetlands; drainage; environmental effects; mines; mitigation; pollutants; pollution; remediation; surface water; toxic materials; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher The Pennsylvania Academy of Science Book Publications Place of Publication 25 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Ecology of wetlands and associated systems Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructing wetlands for passive treatment of coal mine drainage; 2002-024212; GeoRef; English; References: 27; illus. incl. 2 tables United States (USA) Approved no  
  Call Number CBU @ c.wolke @ 6210 Serial 330  
Permanent link to this record
 

 
Author Demin, O.A.; Dudeney, A.W.L.; Tarasova, I.I. openurl 
  Title Remediation of Ammonia-rich Minewater in Constructed Wetlands Type Journal Article
  Year 2002 Publication Environ. Technol. Abbreviated Journal  
  Volume 23 Issue 5 Pages (down) 497-514  
  Keywords constructed wetlands reed beds ammonia removal nitrification woolley colliery horizontal subsurface flow nitrate removal waste-water denitrification nitrification  
  Abstract A three-year study of ammonia removal from minewater was carried out employing constructed wetland systems (surface flow wetland and subsurface flow wetland cells) at the former Woolley Mine in West Yorkshire, UK The 1.4 Ha surface flow wetland (constructed in 1995) reduced the ammonia concentration from 3.5 – 4.5 mg l(-1) to < 2 3 mg V during the first half of the study and to essentially zero in the last year (2000 – 2001). About 25 % of contained ammonia was converted to nitrate, about 10 % was consumed by the plants and up to 30 % was converted to nitrogen gas. This maturation effect was attributed to increased depth of sludge from sedimentation of ochre, providing increased surface area for immobilisation of ammonia oxidising bacteria. The surface flow wetland finally removed 23 g m(-2) day(-1) ammonia in comparison with 3.8 g m(-2) day' for the subsurface flow (pea gravel) wetland cells, constructed for the present work and dosed with ammonium salts. Removal of ammonia by both systems was consistent with well-established mechanisms of nitrification and denitrification. It was also consistent with ammonia removal in wastewater wetland systems, although the greater aeration in the minewater systems obviated the need for special aeration cycles. The general role of wetland plants in such aerated conditions was attributed to maintaining hydraulic conditions (such as hydraulic efficiency and hydraulic resistance of substratum in subsurface flow systems) in the wetlands and providing a suspended solids filter for minewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3330 ISBN Medium  
  Area Expedition Conference  
  Notes Remediation of Ammonia-rich Minewater in Constructed Wetlands; Isi:000176238900002; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17328 Serial 405  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: