|   | 
Details
   web
Records
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages (down) 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal
Volume Issue Pages (down) 1545
Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology
Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.
Address
Corporate Author Thesis
Publisher AAPG Bulletin Place of Publication 81 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no
Call Number CBU @ c.wolke @ 16630 Serial 70
Permanent link to this record
 

 
Author Aytas, S.O.; Akyil, S.; Aslani, M.A.A.; Aytekin, U.
Title Removal of uranium from aqueous solutions by diatomite (Kieselguhr) Type Journal Article
Year 1999 Publication Journal of Radioanalytical and Nuclear Chemistry Abbreviated Journal
Volume 240 Issue 3 Pages (down) 973-976
Keywords acid mine drainage; actinides; adsorption; aqueous solutions; clastic rocks; concentration; decontamination; diatomite; experimental studies; isotherms; laboratory studies; metals; pH; physicochemical properties; pollution; remediation; sedimentary rocks; solutes; sorption; techniques; uranium; uranyl ion; waste disposal; waste water 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-5731 ISBN Medium
Area Expedition Conference
Notes Removal of uranium from aqueous solutions by diatomite (Kieselguhr); 2000-058980; References: 18; illus. incl. 3 tables International (III); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5964 Serial 471
Permanent link to this record
 

 
Author Ntengwe, F.W.
Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
Year 2005 Publication Phys. Chem. Earth Abbreviated Journal
Volume 30 Issue 11-16 Spec. Iss. Pages (down) 726-734
Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World
Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.
Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17497 Serial 24
Permanent link to this record
 

 
Author Mitchell, P.; Rybock, J.; Wheaton, A.
Title Treatment and prevention of ARID using silica micro encapsulation Type Book Chapter
Year 1999 Publication Proceedings of the 16th annual National meeting of the American Society for Surface Mining and Reclamation; Mining and reclamation for the next millennium Abbreviated Journal
Volume Issue Pages (down) 657-661
Keywords acid mine drainage Bunker Hill Mine Idaho mines pollution Shoshone County Idaho United States water treatment 22, Environmental geology
Abstract In response to the known drawbacks of liming and the ever-increasing regulatory demands on the mining industry, KEECO has developed a silica micro encapsulation (SME) process. SME is a cost-effective, high performance reagent that is utilized in conjunction with simple chemical delivery systems. By encapsulating metals in a silica matrix formation and rapidly precipitating them into a sand-like sludge, it offers all the advantages of liming without the negative drawbacks. Utilizing an injection technique via a high shear mixing device, a slurry from of the SME product called KB-1 (super TM) was applied to ARD at the Bunker Hill Mine in Idaho and to ARD pumped from collection ponds at a remote mine site in the Sierra Nevada Mountains. Flow rates at both sites ranged from 500 to 800 gallons per minute. Treated water from the Bunker Hill Mine operation achieved the site's NPDES criteria for all evaluated metals and U.S. Drinking Water quality for arsenic, cadmium, chromium, lead and zinc with a dosage rate of 1.34 grams KB-1 (super TM) per liter. Treated water from the Sierra Nevada project focused on the control of aluminum, arsenic, copper, iron and nickel. All water samples displayed a >99.5% reduction in these metals, as well as an 84%-87% reduction in the concentration of sulfate. Testing on sludge generated from both operations achieved TCLP Action Limits. The SME process is currently under evaluation as a means to coat the pyrite surfaces of newly generated mine tailings to prevent oxidation and future acid generation.
Address
Corporate Author Thesis
Publisher Place of Publication 16 Editor Bengson, S.A.; Bland, D.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment and prevention of ARID using silica micro encapsulation; GeoRef; English; 2001-047986; 16th annual National meeting of the American Society for Surface Mining and Reclamation, Scottsdale, AZ, United States, Aug. 13-19, 1999 2 tables Approved no
Call Number CBU @ c.wolke @ 16602 Serial 297
Permanent link to this record