|   | 
Details
   web
Records
Author Rammlmair, D.; Grissemann, C.
Title Natural attenuation in slag heaps versus remediation Type Book Chapter
Year 2000 Publication Applied mineralogy in research, economy, technology, ecology and culture Abbreviated Journal
Volume Issue Pages (down) 645-648
Keywords acid mine drainage; alteration; concentration; concepts; crust; deposition; design; development; diagenesis; exhalative processes; fines; fluvial features; ground water; leaching; metallurgy; mining; mining geology; mobilization; natural attenuation; physicochemical properties; Plantae; pollution; precipitation; remediation; rivers; slag; time scales; toxic materials; transportation; volatiles; wind transport 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Rammlmair, D.; Mederer, J.; Oberthuer, T.; Heimann, R.B.; Pentinghaus, H.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9058091643 Medium
Area Expedition Conference
Notes Natural attenuation in slag heaps versus remediation; GeoRef; English; 2007-039910; Sixth international congress on Applied mineralogy in research, economy, technology, ecology, and culture, Gottingen, Federal Republic of Germany, July 17-19, 2000 References: 5; illus. Approved no
Call Number CBU @ c.wolke @ 5864 Serial 266
Permanent link to this record
 

 
Author Sato, D.; Tazaki, K.
Title Calcification treatment of mine drainage and depositional formula of heavy metals Type Journal Article
Year 2000 Publication Chikyu Kagaku = Earth Science Abbreviated Journal
Volume 54 Issue 5 Pages (down) 328-336
Keywords acid mine drainage Asia calcification deposition ettringite Far East heavy metals Ishikawa Japan Japan lime Ogoya Mine pollution sulfates waste water water treatment 22, Environmental geology
Abstract Depositional formula of heavy metals after disposal of the mine drainage from the Ogoya Mine in Ishikawa Prefecture, Japan, was mineralogically investigated. Strong acidic wastewater (pH 3.5) from pithead of the mine contains high concentration of heavy metals. In this mine, neutralizing coagulation treatment is going on by slaked lime (calcium hydroxides: Ca(OH) (sub 2) ). Core samples were collected at disposal pond to which the treated wastewater flows. The core samples were divided into 44 layers based on the color variation. The mineralogical and chemical compositions of each layer were analyzed by an X-ray powder diffractometer (XRD), an energy dispersive X-ray fluorescence analyzer (ED-XRF) and a NCS elemental analyzer. The upper parts are rich in brown colored layers, whereas discolored are the deeper parts. The color variation is relevant to Fe concentration. Brown colored core sections are composed of abundant hydrous ferric oxides with heavy metals, such as Cu, Zn, and Cd. On the other hand, S concentration gradually increases with depth. XRD data indicated that calcite decreases with increasing depth, and ettringite is produced at the deeper parts. Cd concentration shows similar vertical profile to those of calcite and ettringite. The results revealed that hydrous ferric oxides, calcite and ettringite are formed on deposition, whereby incorporating the heavy metals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0366-6611 ISBN Medium
Area Expedition Conference
Notes Calcification treatment of mine drainage and depositional formula of heavy metals; 2001-032610; References: 19; illus. incl. 1 table, sketch map Japan (JPN); GeoRef; Japanese Approved no
Call Number CBU @ c.wolke @ 16543 Serial 252
Permanent link to this record
 

 
Author Faulkner, B.B.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Treatment of acid mine drainage by passive treatment systems Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages (down)
Keywords acid mine drainage; acidification; alkalinity; carbonate rocks; chemical reactions; constructed wetlands; controls; depositional environment; ground water; heavy metals; limestone; microorganisms; pollution; sedimentary rocks; substrates; surface water; techniques; United States; water pollution; water treatment; West Virginia; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by passive treatment systems; GeoRef; English; 2004-051153; Edition: 2 References: 13; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 6363 Serial 384
Permanent link to this record