|   | 
Details
   web
Records
Author Cravotta, C.A., III; Trahan, M.K.
Title Limestone drains to increase pH and remove dissolved metals from acidic mine drainage Type Journal Article
Year 1999 Publication Appl. Geochem. Abbreviated Journal
Volume 14 Issue 5 Pages (down) 581-606
Keywords manganese oxide redox processes sulfate waters iron-oxides adsorption ions oxidation surfaces environments aluminum
Abstract Despite encrustation by Fe and Al hydroxides, limestone can be effective for remediation of acidic mine drainage (AMD). Samples of water and limestone (CaCO3) were collected periodically for 1 a at 3 identical limestone-filled drains in Pennsylvania to evaluate the attenuation of dissolved metals and the effects of pH and Fe- and Al-hydrolysis products on the rate of CaCO3 dissolution. The influent was acidic and relatively dilute (pH < 4; acidity < 90 mg) but contained 1-4 mg . L-1 of O-2, Fe3+, Al3+ and Mn2+. The total retention time in the oxic limestone drains (OLDs) ranged from 1.0 to 3.1 hr. Effluent remained oxic (O-2 > 1 mg . L-1) but was near neutral (pH = 6.2-7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs, The hydrous oxides, nominally Fe(OH)(3) and Al(OH)(3), were visible as loosely bound, orange-yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)(3) and Al(OH)(3) particles were transported downflow. The accumulation of hydrous oxides and elevated pH (> 5) in the downflow part of the OLDs promoted sorption and coprecipitation of dissolved Mn, Cu, Co, Ni and Zn as indicated by decreased concentrations of the metals in effluent and their enrichment relative to Fe in hydrous-oxide particles and coatings on limestone. Despite thick (similar to 1 mm) hydrous-oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within and the OLD where the limestone was not coated. The high rates of CaCO3 dissolution and Fe(OH3) precipitation were associated with the relatively low pH and high Fe3+ concentration near the inflow. The rate of CaCO3 dissolution decreased with increased pH and concentrations of Ca2+ and HCO3- and decreased Pco(2). Because overall efficiency is increased by combining neutralization and hydrolysis reactions, an OLD followed by a settling pond requires less land area than needed for a two-stagetreatment system consisting of an anoxic limestone drain and oxidation-settling pond or wetland. To facilitate removal of hydrous-oxide sludge, a perforated-pipe subdrain can be installed within an OLD. (C) 1999 Elsevier Science Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Jul; Limestone drains to increase pH and remove dissolved metals from acidic mine drainage; Isi:000080043300004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10102.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17470 Serial 22
Permanent link to this record
 

 
Author Robbins, E.I.; Cravotta, C.A.; Savela, C.E.; Nord, G.L.
Title Hydrobiogeochemical Interactions in 'anoxic' Limestone Drains for Neutralization of Acidic Mine Drainage Type Journal Article
Year 1999 Publication Fuel Abbreviated Journal
Volume 78 Issue 2 Pages (down) 259-270
Keywords aluminite biofilms epilithic bacteria gibbsite limestone armoring anoxic limestone drains acid mine drainage surface waters iron aluminum bacteria sulfate
Abstract Processes affecting neutralization of acidic coal mine drainage were evaluated within 'anoxic' limestone drains (ALDs). Influents had pH less than or equal to 3.5 and dissolved oxygen < 2 mg/l. Even though effluents were near neutral (pH > 6 and alkalinity > acidity), two of the four ALDs were failing due to clogging. Mineral-saturation indices indicated the potential for dissolution of calcite and gypsum, and precipitation of Al3+ and Fe3+ compounds. Cleavage mounts of calcite and gypsum that were suspended within the ALDs and later examined microscopically showed dissolution features despite coatings by numerous bacteria, biofilms, and Fe-Al-Si precipitates. In the drain exhibiting the greatest flow reduction, Al-hydroxysulfates had accumulated onlimestone surfaces and calcite etch points, thus causing the decline in transmissivity and dissolution. Therefore, where Al loadings are high and flow rates are low, a pre-treatment step is indicated to promote Al removal before diverting acidic mine water into alkalinity-producing materials. Published by Elsevier Science Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Medium
Area Expedition Conference
Notes Hydrobiogeochemical Interactions in 'anoxic' Limestone Drains for Neutralization of Acidic Mine Drainage; Isi:000078042100020; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17411 Serial 261
Permanent link to this record
 

 
Author Simmons, J.A.; Andrew, T.; Arnold, A.; Bee, N.; Bennett, J.; Grundman, M.; Johnson, K.; Shepherd, R.
Title Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams Type Journal Article
Year 2006 Publication Mine Water Env. Abbreviated Journal
Volume 25 Issue 4 Pages (down) 241-245
Keywords acid mine drainage aluminum calcium limestone sand sediment stream liming West Virginia
Abstract In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams; 1; FG 4 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17420 Serial 248
Permanent link to this record
 

 
Author Sottnik, P.; Sucha, V.
Title Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica Type Journal Article
Year 2001 Publication Mineralia Slovaca Abbreviated Journal
Volume 33 Issue 1 Pages (down) 53-60
Keywords acid mine drainage aluminum Banska Stiavnica Slovakia Central Europe copper Eh Europe gangue heavy metals iron manganese metals metamorphic rocks oxidation pH pollution precipitation pyrite quartzites reduction remediation Slovakia Sobov Mine sulfides vegetation waste disposal wetlands 22, Environmental geology
Abstract A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0369-2086 ISBN Medium
Area Expedition Conference
Notes Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica; 2004-084366; References: 21; illus. incl. sects. Slovak Republic (SVK); GeoRef; Slovakian Approved no
Call Number CBU @ c.wolke @ 16534 Serial 235
Permanent link to this record
 

 
Author Schwartz, M.O.; Ploethner, D.
Title From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia Type Book Chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords Africa; aluminum; cadmium; canals; carbonates; copper; drinking water; geochemistry; Grootfontein-Omatako Canal; heavy metals; hydrochemistry; iron; lead; manganese; metallogenic provinces; metals; mine drainage; mineral deposits, genesis; mines; Namibia; policy; precipitation; purification; Southern Africa; transport; water management; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Bundesanst. fuer Geowiss. und Rohstoffe Place of Publication Hanover Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia; GeoRef; English; 2002-033925; International congress on Mine, water and environment, Seville, Spain, Sept. 13, 1999 References: 7; 2 tables, sketch maps Approved no
Call Number CBU @ c.wolke @ 5929 Serial 250
Permanent link to this record