|   | 
Details
   web
Records
Author Kauffman, J.W.
Title Microbiological Treatment Of Uranium-Mine Waters Type Journal Article
Year 1986 Publication Environ Sci Technol Abbreviated Journal
Volume 20 Issue 3 Pages (up) 243-248
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Microbiological Treatment Of Uranium-Mine Waters; Wos:A1986a219600007; Times Cited: 26; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 14751 Serial 93
Permanent link to this record
 

 
Author Harrington, J.M.
Title In situ treatment of metals in mine workings and materials Type Journal Article
Year 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal
Volume Issue Pages (up) 251-261
Keywords mine water treatment
Abstract Contact of oxygen contained in air and water with mining materials can increase the solubility of metals. In heaps leached by cyanide, metals can also be made soluble through complexation with cyanide. During closure, water in heaps, and water collected in mine workings and pit lakes may require treatment to remove these metals. In situ microbiological treatment to create reductive conditions and to precipitate metals as sulfides or elemental metal has been applied at several sites with good success. Treatment by adding organic carbon to stimulate in situ microbial reduction has been successful in removing arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, tin, uranium, and zinc to a solid phase. Closure practices can affect the success of in situ treatment at mining sites, and affect the stability of treated materials. This paper defines factors that determine the cost and permanence of in situ treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes In situ treatment of metals in mine workings and materials; Isip:000175560600034; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17037 Serial 161
Permanent link to this record
 

 
Author Younger, P.L.
Title Passive in situ remediation of acidic mine waste leachates: progress and prospects Type Journal Article
Year 2003 Publication Land Reclamation: Extending the Boundaries Abbreviated Journal
Volume Issue Pages (up) 253-264
Keywords mine water treatment
Abstract The reclamation of former mining sites is a major challenge in many parts of the world. In relation to the restoration of spoil heaps (mine waste rock piles) and similar bodies of opencast backfill, key challenges include (i) the establishment of stable slopes and minimization of other geotechnical hazards (ii) developing and maintaining a healthy vegetative cover (iii) managing the hydrological behaviour of the restored ground. Significant advances have been made over the past four decades in relation to all four of these objectives. One of the most recalcitrant problems is the ongoing generation and release of acidic leachates, which typically emerge at the toes of (otherwise restored) spoil heaps in the form of springs and seepage areas. Such features are testament to the presence of a “perched” groundwater circulation system within the spoil, and their acidity reflects the continued penetration of oxygen to zones within the heaps which contain reactive pyrite (and other iron sulphide minerals). Two obvious strategies for dealing with this problem are disruption of the perched groundwater system and/or exclusion of oxygen entry. These strategies are now being pursued with considerable success where spoil is being reclaimed for the first time, by the installation of two types of physical barrier (dry covers and water covers). However, where a spoil heap has already been revegetated some decades ago, the destruction of an established sward or woodland in order to retro-fit a dry cover or water cover is rarely an attractive option for dealing with the “secondary dereliction” represented by ongoing toe seepages of acidic leachates. More attractive by far are passive treatment techniques, in which the polluted water is forced to flow through reactive media which serve to neutralize its acidity and remove toxic metals from solution. A brief historical review of the development of such systems reveals a general progression from using limestone as the key neutralizing agent, through a combined use of limestone and compost, to systems in which almost all of the neutralization is achieved by means of bacterial sulphate reduction in the saturated compost media of subsurface-flow bioreactors. In almost all cases, these passive treatment systems include an aerobic, surface flow wetland as the final “polishing” step in the treatment process. Such wetlands combine treatment functions (efficient removal of metals from the now-neutralized waters down to low residual concentrations, and re-oxygenating the water prior to discharge to receiving watercourses) with amenity value (attractive areas for recreational walking, bird-watching etc) and ecological value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Passive in situ remediation of acidic mine waste leachates: progress and prospects; Isip:000183447100035; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17016 Serial 158
Permanent link to this record
 

 
Author Masarczyk, J.; Hansson, C.H.; Solomon, R.L.; Hallmans, B.
Title Desalination Plant at Kwk-debiensko, Poland – Advanced Mine Drainage Water-treatment Engineering for Zero Discharge Type Journal Article
Year 1989 Publication Desalination Abbreviated Journal
Volume 75 Issue 1-3 Pages (up) 259-287
Keywords mine water treatment
Abstract The river water in Poland has, to a great extent, such a high salinity that it cannot be used as drinking water, agricultural or industrial water. A large environmental project is now under progress in Katowice, Poland, in order to eliminate the wastewater discharge from two coal mines — Debiensko and Budryk. The highly brackish water will be desalinated in a reverse osmosis plant, followed by vapor compression distillation with seed crystals (RCC), crystallization and sodium chloride drying. This zero discharge process will produce about 8,000 m3/d drinking water an 370 tonnes/d NaCl. The paper describes the design of the plant. Trial operation of pre-treatment and reverse osmosis in a pilot plant for design of the full-scale plant at Debiensko is described in a separate paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-9164 ISBN Medium
Area Expedition Conference
Notes Desalination Plant at Kwk-debiensko, Poland – Advanced Mine Drainage Water-treatment Engineering for Zero Discharge; Isi:A1989cf92100018; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9786 Serial 28
Permanent link to this record
 

 
Author Jarvis, A.P.
Title Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK Type Journal Article
Year 2006 Publication Environmental Pollution Abbreviated Journal
Volume 143 Issue 2 Pages (up) 261-268
Keywords mine water treatment
Abstract A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16928 Serial 109
Permanent link to this record