|   | 
Details
   web
Records
Author Bochkarev, G.R.; Beloborodov, A.V.; Kondrat'ev, S.A.; Pushkareva, G.I.
Title Intensification of Aeration in treating Natural-Water and Mine Water Type Journal Article
Year 1994 Publication J. Min. Sci. Abbreviated Journal
Volume 30 Issue 6 Pages (up) 5
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-7391 ISBN Medium
Area Expedition Conference
Notes Nov; Intensification of Aeration in treating Natural-Water and Mine Water; New York: Consultants Bureau; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7033.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7033 Serial 15
Permanent link to this record
 

 
Author Dugan, P.R.
Title Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions Type Journal Article
Year 1987 Publication Biotechnol. Bioeng. Abbreviated Journal
Volume 29 Issue 1 Pages (up) 6
Keywords mine water treatment Chemistry Biochemistry and Biotechnology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3592 ISBN Medium
Area Expedition Conference
Notes Jan; Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions; New York, NY [u.a.] : Wiley; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7028.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7028 Serial 80
Permanent link to this record
 

 
Author Kothe, E.
Title Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms Type Journal Article
Year 2005 Publication Chemie Der Erde-Geochemistry Abbreviated Journal
Volume 65 Issue Pages (up) 7-27
Keywords mine water treatment
Abstract The understanding of molecular mechanisms in the cycling of elements in general is essential to our alteration of current processes. One field where such geochemical element cycles are of major importance is the prevention and treatment of acid mine drainage waters (AMD) which are prone to occur in every anthropogenic, modified landscape where sulfidic rock material has been brought to the surface during mine operations. Microbiologically controlled production of AMD leads not only to acidification, but at the same time the dissolution of heavy metals makes them bioavailable posing a potential ecotoxicological risk. The water path then can contaminate surface and ground water resources which leads to even bigger problems in large catchment areas. The investigation of mechanisms in natural attenuation has already provided first ideas for applications of naturally occurring bioremediation schemes. Especially an improved soil microflora can enhance the natural attenuation when adapted microbes are applied to contaminated areas. Future schemes for plant extraction, control of water efflux by increasing evapotranspiration, and by subsequent land use with agricultural plants with biostabilization and phytosequestration potential will provide putative control measures. The mechanisms in parts of these processes have been evaluated and the resulting synthesis applied to derive a bioremediation plan using the former uranium mine in Eastern Thuringia as a case study. (c) 2005 Elsevier GrnbH. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms; Wos:000233975000002; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16965 Serial 114
Permanent link to this record
 

 
Author Burt, R.A.; Caruccio, F.T.
Title The effect of limestone treatments on the rate of acid generation from pyritic mine gangue Type Journal Article
Year 1986 Publication Environmental geochemistry and health Abbreviated Journal
Volume 8 Issue Pages (up) 8
Keywords mine water treatment
Abstract Surface water enters the Haile Gold Mine, Lancaster County, South Carolina by means of a small stream and is ponded behind a dam and in an abandoned pit. This water is affected by acidic drainage. In spite of the large exposures of potentially acid producing pyritic rock, the flux of acid to the water is relatively low. Nevertheless, the resulting pH values of the mine water are low (around 3.5) due to negligible buffering capacity. In view of the observed low release of acidity, the potential for acid drainage abatement by limestone ameliorants appears feasible. This study investigated the effects of limestone treatment on acid generation rates of the Haile mine pyritic rocks through a series of leaching experiments. Below a critical alkalinity threshold value, solutions of dissolved limestone were found consistently to accelerate the rate of pyrite oxidation by varying degrees. The oxidation rates were further accelerated by admixing solid limestone with the pyritic rock. However, after a period of about a month, the pyrite oxidation rate of the admixed samples declined to a level lower than that of untreated pyrite. Leachates produced by the pyrite and limestone mixtures contained little if any iron. Further, in the mixtures, an alteration of the pyrite surface was apparent. The observed behaviour of the treated pyrite appears to be related to the immersion of the pyrite grains within a high alkalinity/high pH environment. The high pH increases the rate of oxidation of ferrous iron which results in a higher concentration of ferric iron at the pyrite surface. This, in turn, increases the rate of pyrite oxidation. Above a threshold alkalinity value, the precipitation of hydrous iron oxides at the pyrite surface eventually outpaces acid generation and coats the pyrite surface, retarding the rate of pyrite oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-4042 ISBN Medium
Area Expedition Conference
Notes Sept; The effect of limestone treatments on the rate of acid generation from pyritic mine gangue; London: Chapman & Hall; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7021.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7021 Serial 14
Permanent link to this record
 

 
Author Chen, M.; Li, L.; Grace, J.; Tazaki, K.; Shiraki, K.; Asada, R.; Watanabe, H.
Title Remediation of acid rock drainage by regenerable natural clinoptilolite Type Journal Article
Year 2007 Publication Water, Air, Soil Pollut. Abbreviated Journal
Volume 180 Issue 1-4 Pages (up) 11-27
Keywords mine water treatment
Abstract Clinoptilolite is investigated as a possible regenerable sorbent for acid rock drainage based on its adsorption capacity for Zn, adsorption kinetics, effect of pH, and regeneration performance. Adsorption of Zn ions depends on the initial concentration and pH. Adsorption/Desorption of Zn reached 75% of capacity after 1-2 h. Desorption depended on pH, with an optimum range of 2.5 to 4.0. The rank of desorption effectiveness was EDTAEDTA > NaCl > NaNO3 > NaOAc > NaHCO3 > Na2CO3 > NaOH > CeCa(OH)(2). For cyclic absorption/desorption, adsorption remained satisfactory for six to nine regenerations with EDTA and NaCl, respectively. The crystallinity and morphology of clinoptilolite remained intact following 10 regeneration cycles. Clinoptilolite appears to be promising for ARD leachate treatment, with significant potential advantages relative to current treatment systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-6979 ISBN Medium
Area Expedition Conference
Notes Mar; Remediation of acid rock drainage by regenerable natural clinoptilolite; Wos:000244030000003; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7319 Serial 17
Permanent link to this record