|   | 
Details
   web
Records
Author Brunet, J.-F.
Title Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art Type Journal Article
Year 2000 Publication Principaux Resultats Scientifiques – Bureau de Recherches Geologiques et Minieres Abbreviated Journal
Volume 1999/2000 Issue Pages 97-98
Keywords acid mine drainage; cost; decontamination; dissolved materials; efficiency; metals; pollutants; pollution; regulations; remediation; sulfides; technology; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0766-7175 ISBN Medium
Area Expedition Conference
Notes Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art; 2002-059955; France (FRA); GeoRef; French; English Approved no
Call Number CBU @ c.wolke @ 5888 Serial 429
Permanent link to this record
 

 
Author Brown, M.; Barley, B.; Wood, H.
Title Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acidic composition bioremediation case studies chemical composition chemical reactions coal mines concentration constructed wetlands discharge England Europe Great Britain ground water international cooperation ion exchange kinetics legislation mines mining open-pit mining physicochemical properties policy pollution regulations remediation Scotland sulfate ion surface mining surface water tailings techniques technology underground mining United Kingdom Wales waste disposal waste management waste rock water pollution water resources water treatment weathering Western Europe wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher IWA Publishing Place of Publication London Editor (up)
Language Summary Language Original Title
Series Editor Series Title Minewater treatment; technology, application and policy Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1843390043 Medium
Area Expedition Conference
Notes Minewater treatment; technology, application and policy; 2006-084782; GeoRef; English; Includes appendices References: 416; illus. Approved no
Call Number CBU @ c.wolke @ 16503 Serial 433
Permanent link to this record
 

 
Author Berthelot, D.; Haggis, M.
Title Application of remote monitoring and data management systems to environmental management of tailings facilities Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Algoma District Ontario applications Canada cost data management data processing Eastern Canada efficiency effluents Elliot Lake Ontario environmental analysis environmental management information management land management mining monitoring Ontario planning pollution remediation solid waste Stanleigh Mine tailings technology waste disposal 22, Environmental geology
Abstract The mining industry has made tremendous strides in the last 20 years in the prevention and control of acid mine drainage. However, there remain a number of circumstances where the long-term operation, care and maintenance of tailings management facilities will be required. The application of progressive environmental technologies and management systems is key to cost control and environmental liability management at these sites. Mine Waste Management Inc. currently operates Rio Algom Limited's five effluent treatment plants and seven waste management areas in the Elliot Lake, Ontario region using a Remote Plant Monitoring and Control Network (RPMCN). This system, based on Intellutions's “Fix 32” technology, enables the monitoring and control of these plants from a centralized location thus reducing labour costs while providing 24-hour surveillance. Scheduling, auditing and reporting of plant operating and environmental monitoring programs are integrated and controlled using the Envista (super TM) environmental information management system. Proper application of these technologies and management systems facilitates delivery of cost-effective environmental monitoring, and care and maintenance programs at these sites and provides tools to demonstrate compliance with all environmental performance criteria.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up) Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Application of remote monitoring and data management systems to environmental management of tailings facilities; GeoRef; English; 2002-060870; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 2; illus. incl. sketch map Approved no
Call Number CBU @ c.wolke @ 16575 Serial 449
Permanent link to this record
 

 
Author Pettit, C.M.; Scharer, J.M.; Chambers, D.B.; Halbert, B.E.; Kirkaldy, J.L.; Bolduc, L.
Title Neutral mine drainage Type Book Chapter
Year 1999 Publication Sudbury '99; mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage drainage geochemistry mining mining geology models neutral mine drainage pH pollution remediation technology water management water quality water resources 22, Environmental geology
Abstract Acid mine drainage is recognized as a serious environmental issue at mine sites world wide. While sulphate and metal concentrations in acidic drainage can reach exceptionally high levels, these can also be elevated and of concern in neutral drainage from waste rock and tailings. “Neutral mine drainage” (NMD) has not yet received as widespread attention as acid mine drainage (AMD). The oxidation of sulphide minerals and the production of either acidic or neutral contaminated drainage is affected by many factors. This paper examines the specific factors that result in the production of “neutral mine drainage” from mine wastes. Several case studies are presented which involve predictive geochemical modelling to illustrate the possible time frame and magnitude of contaminated neutral drainage.
Address
Corporate Author Thesis
Publisher Sudbury Environmental Place of Publication Sudbury Editor (up) Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Neutral mine drainage; GeoRef; English; 2000-043769; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 12; illus. incl. 3 tables Approved no
Call Number CBU @ c.wolke @ 16589 Serial 270
Permanent link to this record
 

 
Author Greben, H.A.; Matshusa, M.P.; Maree, J.P.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 339-345
Keywords water pollution biological Sulphate removal technology sulphate acidity metals treatment technique
Abstract Mining is implicated as a significant contributor to water pollution, the prime reason being, that pyrites oxidize to sulphuric acid when exposed to air and water. Mine effluents, often containing sulphate, acidity and metals, should be treated to render it suitable for re-use in the mining industry, for irrigation of crops or for discharge in water bodies. This study describes the removal of all three mentioned pollutants in mine effluents, from different origins, containing different concentrations of various metals. The objectives were achieved, applying the biological sulphate removal technology, using ethanol as the carbon and energy source. It was shown that diluting the mine effluent with the effluent from the biological treatment, the pH increased due to the alkalinity in the treated water while the metals precipitated with the produced sulphide. When this treatment regime was changed and the mine water was fed undiluted, it was found that the metals stimulated the methanogenic bacteria (MB) as trace elements. This resulted in a high COD utilization of the MB, such that too little COD was available for the SRB. Metal removal in all three studies was observed and in most instances the metals were eliminated to the required disposal concentration.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor (up) Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes The biological Sulphate removal technology; 1; AMD ISI | Wolkersdorfer; FG 'aha' 3 Abb., 9 Tab. Approved no
Call Number CBU @ c.wolke @ 17347 Serial 367
Permanent link to this record