|   | 
Details
   web
Records
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Younger, P.L.
Title Holistic remedial strategies for short- and long-term water pollution from abandoned mines Type Journal Article
Year 2000 Publication Transactions of the Institution of Mining and Metallurgy Section a-Mining Technology Abbreviated Journal
Volume 109 Issue Pages A210-A218
Keywords abandoned mines acid mine drainage Europe mines mining planning pollution remediation United Kingdom water pollution Western Europe
Abstract Where mining proceeds below the water-table-as it has extensively in Britain and elsewhere-water ingress is not only a hindrance during mineral extraction but also a potential liability after abandonment. This is because the cessation of dewatering that commonly follows mine closure leads to a rise in the water-table and associated, often rapid, changes in the chemical regime of the subsurface. Studies over the past two decades have provided insights into the nature and time-scales of these changes and provide a basis for rational planning of mine-water management during and after mine abandonment. The same insights into mine-water chemistry provide hints for the efficient remediation of pollution (typically due to Fe, Mn and Al and, in some cases, Zn, Cd, Pb and other metals). Intensive treatment (by chemical dosing with enhanced sedimentation or alternative processes, such as sulphidization or reverse osmosis) is often necessary only during the first few years following complete flooding of mine voids. Passive treatment (by the use of gravity-flow geochemical reactors and wetlands) may be both more cost-effective and ecologically more responsible in the long term. By the end of 1999 a total of 28 passive systems had been installed at United Kingdom mine sites, including examples of system types currently unique to the United Kingdom. Early performance data for all the systems are summarized and shown to demonstrate the efficacy of passive treatment when appropriately applied.
Address
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0371-7844 ISBN Medium
Area Expedition Conference
Notes Holistic remedial strategies for short- and long-term water pollution from abandoned mines; Wos:000167240600013; Times Cited: 2; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17458 Serial 126
Permanent link to this record
 

 
Author Nakazawa, H.
Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal
Volume Issue Pages 373-381
Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production
Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.
Address
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-87339-642-1 ISBN Medium
Area Expedition Conference
Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17456 Serial 151
Permanent link to this record
 

 
Author Wolkersdorfer, C.
Title Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages 2490-2501 [Cd-Rom]
Keywords mine water flooded shaft underground mining mine water pollution
Abstract Acid mine drainage, the drainage of metals, and the prediction of mine water rebound after mine closure are major problems for the mining industry. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only a few tracer tests in flooded mines have been published. Increased knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. Relatively cheap and reliable results for decision making can be obtained when tracer tests are properly conducted in a flooded mine prior to planning of remediation strategies or numerical simulations. Applying the results of successful tracer tests allows one to optimise remediation designs and thereby diminish the costs of remediation. The paper summarises the results of several tracer tests and draws general conclusions from such tests.
Address
Corporate Author (up) Thesis
Publisher Proceedings, International Conference of Acid Rock Drainage (ICARD) Place of Publication 7 Editor
Language Summary Language Original Title
Series Editor Series Title Icard 2006 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage Tracer Tests; 2; AMD ISI | Wolkersdorfer; 5 Abb. Approved no
Call Number CBU @ c.wolke @ 17446 Serial 203
Permanent link to this record
 

 
Author Wilmoth, R.C.; Mason, D.G.; Gupta, M.
Title Treatment of ferrous iron acid mine drainage by reverse osmosis Type Journal Article
Year 1972 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; coal; controls; environmental geology; Environmental Protection Agency; experimental studies; ferrous iron; iron; metals; methods; mining; Mocanaqua; organic residues; Pennsylvania; pollution; reverse osmosis; sedimentary rocks; treatment; United States 22, Environmental geology
Abstract
Address
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0085-7068 ISBN Medium
Area Expedition Conference
Notes Treatment of ferrous iron acid mine drainage by reverse osmosis; 1976-011825; illus. incl. tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6846 Serial 208
Permanent link to this record