toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kauffman, J.W. url  openurl
  Title Microbiological Treatment Of Uranium-Mine Waters Type Journal Article
  Year 1986 Publication Environ Sci Technol Abbreviated Journal  
  Volume 20 Issue 3 Pages 243-248  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbiological Treatment Of Uranium-Mine Waters; Wos:A1986a219600007; Times Cited: 26; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 14751 Serial 93  
Permanent link to this record
 

 
Author Bosman, D.J. url  openurl
  Title Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation Type Journal Article
  Year 1983 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 15 Issue 2 Pages 71-84  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation; Wos:A1983qg97300005; Times Cited: 7; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 14794 Serial 95  
Permanent link to this record
 

 
Author Matlock, M.M.; Howerton, B.S.; Atwood, D.A. url  openurl
  Title Chemical precipitation of heavy metals from acid mine drainage Type Journal Article
  Year 2002 Publication Water Res Abbreviated Journal  
  Volume 36 Issue 19 Pages 4757-4764  
  Keywords mine water treatment BDET Acid mine drainage Water treatment Remediation Heavy metals Chemical precipitation Mercury Iron  
  Abstract The 1,3-benzenediamidoethanethiol dianion (BDET, known commercially as MetX) has been developed to selectively and irreversibly bind soft heavy metals from aqueous solution. In the present study BDET was found to remove >90% of several toxic or problematic metals from AMD samples taken from an abandoned mine in Pikeville, Kentucky. The concentrations of metals such as iron, may be reduced at pH 4.5 from 194 ppm to below 0.009 ppm. The formation of stoichiomietric BDET-metal precipitates in this process was confirmed using X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and infrared spectroscopy (IR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Nov.; Chemical precipitation of heavy metals from acid mine drainage; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/15005.pdf; Science Direct Approved no  
  Call Number (up) CBU @ c.wolke @ 15005 Serial 48  
Permanent link to this record
 

 
Author Bamforth, S.M. url  openurl
  Title Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates Type Journal Article
  Year 2006 Publication Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 8 Pages 1274-1287  
  Keywords mine water treatment  
  Abstract Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate may not be necessary for successful Mn precipitation. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates; Wos:000240297600004; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16916 Serial 107  
Permanent link to this record
 

 
Author Bearcock, J.M. url  openurl
  Title Accelerated precipitation of ochre for mine water remediation Type Journal Article
  Year 2006 Publication Geochim. Cosmochim. Acta Abbreviated Journal  
  Volume 70 Issue 18 Pages A42-A42  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Accelerated precipitation of ochre for mine water remediation; Wos:000241374200094; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16919 Serial 104  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: