|   | 
Details
   web
Records
Author Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W.
Title A handbook of technologies for avoidance and remediation of acid mine drainage Type RPT
Year 1998 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage bioremediation coal mines constructed wetlands disposal barriers ion exchange mines pollution pumping recharge remediation reverse osmosis surface water technology waste disposal waste management water treatment wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Acid Drainage Technology Initiative, A. and R.W.G.U.S. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A handbook of technologies for avoidance and remediation of acid mine drainage; 2001-074240; GeoRef; English; References: 72; illus. incl. 5 tables West Virginia University, National Mine Land Reclamation Center, Morgantown, WV, United States Approved no
Call Number (up) CBU @ c.wolke @ 16615 Serial 245
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number (up) CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J.
Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
Year 2006 Publication Appl. Geochem. Abbreviated Journal
Volume 21 Issue 12 Pages 2188-2200
Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry
Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no
Call Number (up) CBU @ c.wolke @ 17248 Serial 44
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B.
Title Acid mine drainage remediation options: a review Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 3-14
Keywords Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane
Abstract Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct Approved no
Call Number (up) CBU @ c.wolke @ 17464 Serial 47
Permanent link to this record
 

 
Author Landers, J.
Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
Year 2006 Publication Civil Engineering Abbreviated Journal
Volume 76 Issue 7 Pages 30-31
Keywords Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America
Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7024 ISBN Medium
Area Expedition Conference
Notes Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no
Call Number (up) CBU @ c.wolke @ 17490 Serial 318
Permanent link to this record