|   | 
Details
   web
Records
Author Pettit, C.M.; Scharer, J.M.; Chambers, D.B.; Halbert, B.E.; Kirkaldy, J.L.; Bolduc, L.
Title Neutral mine drainage Type Book Chapter
Year 1999 Publication Sudbury '99; mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage drainage geochemistry mining mining geology models neutral mine drainage pH pollution remediation technology water management water quality water resources 22, Environmental geology
Abstract Acid mine drainage is recognized as a serious environmental issue at mine sites world wide. While sulphate and metal concentrations in acidic drainage can reach exceptionally high levels, these can also be elevated and of concern in neutral drainage from waste rock and tailings. “Neutral mine drainage” (NMD) has not yet received as widespread attention as acid mine drainage (AMD). The oxidation of sulphide minerals and the production of either acidic or neutral contaminated drainage is affected by many factors. This paper examines the specific factors that result in the production of “neutral mine drainage” from mine wastes. Several case studies are presented which involve predictive geochemical modelling to illustrate the possible time frame and magnitude of contaminated neutral drainage.
Address
Corporate Author Thesis
Publisher Sudbury Environmental Place of Publication Sudbury Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Neutral mine drainage; GeoRef; English; 2000-043769; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 12; illus. incl. 3 tables Approved no
Call Number (up) CBU @ c.wolke @ 16589 Serial 270
Permanent link to this record
 

 
Author Earley, D., III; Schmidt, R.D.; Kim, K.
Title Is sustainable mining an oxymoron? Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acids data processing development ground water leaching mineral resources mining mining geology models monitoring pollution production solutions 26A Economic geology, general, deposits 22 Environmental geology
Abstract Sustainable mining is generally considered to be an oxymoron because mineral deposits are viewed as nonrenewable resources that are fixed in the crust. However, minerals are conserved and recycled by plate tectonics which continually creates and destroys ore deposits. Though it is true that rock cycles have much longer periods than biomass cycles, the crust is essentially an infinite reservoir so long as we continue to invest in mineral exploration and processing technology. Implicit in the definition of sustainable development is the recognition that human development of resources in one reservoir may subsequently degrade resources supplied by another. The depreciation of overlapping and adjacent resources is often externalized in the cost to benefit accounting and cannot be sustained if the integrated cost/benefit ratio is greater than 1. The greatest obstacle to sustainability in mining is the expanding scale of excavation required to develop leaner ores because this activity degrades connected resources. In the case of open pit, sulfide ore mining the disturbed land may produce acid rock drainage (ARD). Because ARD will self-generate over the course of tens to hundreds of years the cost of controlling this pollution and rehabilitating mined lands is large and often spread over many generations. Secondary production of minerals from partially excavated deposits where there are preexisting environmental impacts and mine infrastructure help to reduce the risk of depreciating pristine resources, provided that new mining operations “do no (additional) harm” (Margoles, 1996). In turn, a percentage of the profits derived from secondary mineral production can be used for rehabilitation of the previously mined lands. These lands contain significant, albeit low grade, metal concentrations. These concepts are being developed and tested at the Mineral Park Sustainable Mining Research Facility where an in situ copper sulfide mining field experiment was conducted. Monitoring data and computer modeling indicate that ARD is not generated after closure. This is because the ore is not disturbed and is left saturated, whereas unsaturated conditions generate acidic drainage. The short term risk of groundwater contamination is mitigated by utilizing an exempt mine pit to capture any leach solutions that are not intercepted by the wellfield. Using green accounting techniques and transfer models it can be communicated that this mining scenario is an approach to sustainability.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, 1997 annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1998-051450; Geological Society of America, 1997 annual meeting, Salt Lake City, UT, United States, Oct. 20-23, 1997; GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 16638 Serial 396
Permanent link to this record
 

 
Author Ketellapper, V.L.; Williams, L.O.; Bell, R.S.; Cramer, M.H.
Title The control of acid mine drainage at the Summitville Mine Superfund Site Type Book Chapter
Year 1996 Publication Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), vol.1996 Abbreviated Journal
Volume Issue Pages 303-311
Keywords acid mine drainage Colorado Del Norte Colorado gold ores metal ores mines mining mining geology open-pit mining pollutants pollution remediation Rio Grande County Colorado Summitville Mine Superfund sites surface mining United States water quality 22, Environmental geology
Abstract The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The discharges from the adits was accomplished by plugging the Reynolds and Chandler adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative. Beginning in 1993, mining wastes which were the most significant sources of AMD were being excavated and placed in the Mine Pits. In November 1995, all of the waste from these sources had been excavated and placed in the the Mine Pits. This paper discusses EPA's overall approach to stabilize on-site sources sufficiently such that aquatic, agricultural, and drinking water uses in the Alamosa watershed are restored and/or maintained with minimal water treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The control of acid mine drainage at the Summitville Mine Superfund Site; GeoRef; English; 2002-027195; Symposium on the Application of geophysics to engineering and environmental problems, Keystone, CO, United States, April 28-May 2, 1996 References: 11; illus. incl. geol. sketch map Approved no
Call Number (up) CBU @ c.wolke @ 16654 Serial 334
Permanent link to this record
 

 
Author Curi, A.C.; Granda, W.J.V.; Lima, H.M.; Sousa, W.T.
Title Zeolites and their application in the decontamination of mine waste water Type Journal Article
Year 2006 Publication Informacion Tecnologica Abbreviated Journal
Volume 17 Issue 6 Pages 111-118
Keywords adsorption decontamination effluents industrial waste ion exchange metallurgical industries metallurgy mining mining industry porosity wastewater treatment zeolites zeolites decontamination mine waste water genesis porosity adsorption ionic exchange mineral metallurgical effluents mercury pollution artisan mining activities heavy metals removal metal mining effluents mercury vapors ovens fire amalgams Manufacturing and Production
Abstract This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0716-8756 ISBN Medium
Area Expedition Conference
Notes Zeolites and their application in the decontamination of mine waste water; 9532002; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number (up) CBU @ c.wolke @ 16784 Serial 409
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number (up) CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record