|   | 
Details
   web
Records
Author Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W.
Title A handbook of technologies for avoidance and remediation of acid mine drainage Type RPT
Year 1998 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage bioremediation coal mines constructed wetlands disposal barriers ion exchange mines pollution pumping recharge remediation reverse osmosis surface water technology waste disposal waste management water treatment wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Acid Drainage Technology Initiative, A. and R.W.G.U.S. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A handbook of technologies for avoidance and remediation of acid mine drainage; 2001-074240; GeoRef; English; References: 72; illus. incl. 5 tables West Virginia University, National Mine Land Reclamation Center, Morgantown, WV, United States Approved no
Call Number (up) CBU @ c.wolke @ 16615 Serial 245
Permanent link to this record
 

 
Author Herbert, R.B., Jr.; Benner, S.G.; Blowes, D.W.
Title Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation Type Book Chapter
Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal
Volume Issue Pages 451-457
Keywords acid mine drainage Canada chemical analysis contaminant plumes Eastern Canada ground water hydraulic conductivity hydrolysis Nickel Rim Mine Ontario pH pollution porosity pyrrhotite remediation sample preparation Sudbury Basin sulfides sulfur tailings water pollution 22, Environmental geology
Abstract A permeable reactive barrier was installed in August 1995 at the Nickel Rim Mine near Sudbury, Ontario, Canada, for the passive remediation of groundwater contaminated with acid mine drainage. The reactive component of the barrier consists of a mixture of municipal and leaf compost and wood chips: the organic material promotes bacterially-mediated sulphate reduction. Hydrogen sulphide, a product of sulphate reduction, may then complex with aqueous ferrous iron and precipitate as iron sulphide. This study presents the solid phase sulphur chemistry of the reactive wall after two years of operation, and discusses the formation and accumulation of iron sulphide minerals in the reactive material. The results from the solid-phase chemical analysis of core samples indicate that there is an accumulation of reduced inorganic sulphur in the reactive wall, with levels reaching 190 mu mol g (super -1) (dry weight) by July 1997.
Address
Corporate Author Thesis
Publisher IAHS-AISH Publication, vol.250 Place of Publication Editor Herbert, M.; Kovar, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1901502554 Medium
Area Expedition Conference
Notes Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation; GeoRef; English; 1999-065115; GQ 98 conference, Tubingen, Federal Republic of Germany, Sept. 21-24, 1998 References: 15; illus. Approved no
Call Number (up) CBU @ c.wolke @ 16621 Serial 65
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Journal Article
Year 1998 Publication Environ Geosci Abbreviated Journal
Volume 5 Issue 2 Pages 43-56
Keywords acid mine drainage aerobic environment anaerobic environment attenuation chemical fractionation chemical properties concentration constructed wetlands controls degradation detection environmental analysis ferric iron goethite heavy metals iron jarosite Kentucky McCreary County Kentucky metals oxides pollutants pollution seepage soils solubility sulfates surface water United States water treatment wetlands X-ray diffraction data 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1075-9565 ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; 2001-034195; References: 41; illus. incl. 1 table United States (USA); GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 16623 Serial 61
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal
Volume Issue Pages 1545
Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology
Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.
Address
Corporate Author Thesis
Publisher AAPG Bulletin Place of Publication 81 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no
Call Number (up) CBU @ c.wolke @ 16630 Serial 70
Permanent link to this record
 

 
Author Gong, Z.; Huang, J.; Jiang, H.
Title Study of comprehensive retrieval utilization and the treatment of acid mine wastewater Type Journal Article
Year 1996 Publication Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology Abbreviated Journal
Volume 27 Issue 4 Pages 432-435
Keywords acid mine drainage Asia China copper Far East heavy metals metals pH pollution sulfides utilization waste water water 22, Environmental geology
Abstract Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1005-9792 ISBN Medium
Area Expedition Conference
Notes Study of comprehensive retrieval utilization and the treatment of acid mine wastewater; 1998-066886; References: 4; 4 tables China (CHN); GeoRef; Chinese Approved no
Call Number (up) CBU @ c.wolke @ 16650 Serial 370
Permanent link to this record