toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sasaki, K. url  openurl
  Title Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs Type Journal Article
  Year 2006 Publication Mater. Trans. Abbreviated Journal  
  Volume 47 Issue 10 Pages 2457-2461  
  Keywords mine water treatment  
  Abstract A Mn-oxidizing fungus was isolated from a constructed wetland of Hokkaido (Japan), which is receiving the Mn-impacted drainage, and genetically and morphologically identified as Paraconiothyrium sp.-like strain. The optimum pHs were 6.45-6.64, where is more acidic than those of previously reported Mn-oxidizing fungi. Too much nutrient inhibited fungal Mn-oxidation, and too little nutrient also delayed Mn oxidation even at optimum pH. In order to achieve the oxidation of high concentrations of Mn like mine drainage containing several hundreds g-m(-3) of Mn, it is important to find the best mix ratio among the initial Mn concentrations, inocolumn size and nutrient concentration. The strain has still Mn-tolerance with more than 380 g-m(-3) of Mn, but high Mn(II) oxidation was limited by pH control and supplied nutrient amounts. The biogenic Mn deposit was poorly crystallized birnessite. The strain is an unique Mn-oxidizing fungus having a high Mn tolerance and weakly acidic tolerance, since there has been no record about the property of the strain. There is a potentiality to apply the strain to the environmental bioremediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs; Wos:000242429300002; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (down) CBU @ c.wolke @ 16940 Serial 103  
Permanent link to this record
 

 
Author Olaniran, A.O. url  openurl
  Title Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes Type Journal Article
  Year 2006 Publication Chemosphere Abbreviated Journal  
  Volume 63 Issue 4 Pages 600-608  
  Keywords mine water treatment  
  Abstract The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to deter-mine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P < 0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes; Wos:000237379500007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (down) CBU @ c.wolke @ 16936 Serial 111  
Permanent link to this record
 

 
Author Macklin, M.G. url  openurl
  Title A geomorphological approach to the management of rivers contaminated by metal mining Type Journal Article
  Year 2006 Publication Geomorphology Abbreviated Journal  
  Volume 79 Issue 3-4 Pages 423-447  
  Keywords mine water treatment  
  Abstract As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A geomorphological approach to the management of rivers contaminated by metal mining; Wos:000241084500014; Times Cited: 1; ISI Web of Science Approved no  
  Call Number (down) CBU @ c.wolke @ 16934 Serial 105  
Permanent link to this record
 

 
Author Lee, B.H. url  openurl
  Title Constructed wetlands: Treatment of concentrated storm water runoff (Part A) Type Journal Article
  Year 2006 Publication Environmental Engineering Science Abbreviated Journal  
  Volume 23 Issue 2 Pages 320-331  
  Keywords mine water treatment  
  Abstract The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed) and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm runoff. For those six constructed wetland filters receiving heavy metals, an obvious breakthrough of dissolved nickel was recorded after road salting during the first winter. However, a breakthrough of nickel was not observed, since the inflow pH was raised to eight after the first year of operation. High pH facilitated the formation of particulate metal compounds such as nickel hydroxide. During the second year, reduction efficiencies of heavy metal, 5-days at 20 degrees C N-Allylthiourea biochemical oxygen demand (BOD) and suspended solids (SS) improved considerably. Concentrations of BOD were frequently < 20 mg/L. However, concentrations for SS were frequently > 30 mg/L. These are the two international thresholds for secondary wastewater treatment. The BOD removal increased over time due to biomass maturation, and the increase of pH. An analysis of the findings with case-based reasoning can be found in the corresponding follow-up paper (Part B).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed wetlands: Treatment of concentrated storm water runoff (Part A); Wos:000236600700007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (down) CBU @ c.wolke @ 16932 Serial 112  
Permanent link to this record
 

 
Author Jong, T. url  openurl
  Title Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
  Year 2006 Publication Water Research Abbreviated Journal  
  Volume 40 Issue 13 Pages 2561-2571  
  Keywords mine water treatment  
  Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (down) CBU @ c.wolke @ 16929 Serial 108  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: