|   | 
Details
   web
Records
Author Deul, M.
Title Limestone for controlling acid mine drainage and for the treatment of acid mine water Type Journal Article
Year 1976 Publication Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Abbreviated Journal
Volume 13 Issue 8 Pages A92-111
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-1609 ISBN Medium
Area Expedition Conference
Notes Aug; Limestone for controlling acid mine drainage and for the treatment of acid mine water; Proc. 10th Forum Geol. Ind. Miner. Ohio Dept. Nat. Res. Div. Geol. Surv. Report 1, 1974, P43-46; Science Direct Approved no
Call Number (up) CBU @ c.wolke @ 15103 Serial 51
Permanent link to this record
 

 
Author Sastri, V.S.
Title Reverse-Osmosis Treatment of Acid Mine Water Type Journal Article
Year 1976 Publication Abstr. Pap. Am. Chem. Soc. Abbreviated Journal
Volume 172 Issue Sep3 Pages 66
Keywords mine water
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0065-7727 ISBN Medium
Area Expedition Conference
Notes Reverse-Osmosis Treatment of Acid Mine Water; Isi:A1976cb10101078; American Chemical Society; Washington, DC; AMD ISI | Wolkersdorfer Approved no
Call Number (up) CBU @ c.wolke @ 15794 Serial 253
Permanent link to this record
 

 
Author McLeod, K.W.; Ciravolo, T.G.
Title Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions Type Journal Article
Year 2003 Publication Environmental Toxicology and Chemistry Abbreviated Journal
Volume 22 Issue 12 Pages 2948-2951
Keywords Heavy metals ecological abstracts: pollution (73 7 3) seedling saturated medium biomass manganese sensitivity analysis bioaccumulation Nyssa aquatica Taxodium distichum
Abstract In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 < mu >g/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.
Address K.W. McLeod, Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, United States mcleod@srel.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-7268 ISBN Medium
Area Expedition Conference
Notes Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions; 2574798; United-States 15; Geobase Approved no
Call Number (up) CBU @ c.wolke @ 16010 Serial 302
Permanent link to this record
 

 
Author Smit, J.P.; Pretorius, L.E.
Title The treatment of polluted mine water Type Journal Article
Year 2000 Publication J. Afr. Earth Sci. Abbreviated Journal
Volume 31 Issue 1 Pages 72
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1464-343x ISBN Medium
Area Expedition Conference
Notes The treatment of polluted mine water; 1574235052; UB Bayreuth <703> TU Berlin <83> UB Bochum <294> UB Frankfurt/Main <30> TU Freiberg <105> SUB Goettingen <7> TIB/UB Hannover <89> UB Karlsruhe <90> BSB München <12>; OLC-SSG Geowissenschaften – Online Contents-Sondersammelgebiete Approved no
Call Number (up) CBU @ c.wolke @ 16424 Serial 238
Permanent link to this record
 

 
Author Ciftci, H.; Akcil, A.
Title Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD) Type Journal Article
Year 2006 Publication Madencilik = The = Journal of the Chamber of Mining Engineers of Turkey Abbreviated Journal
Volume 45 Issue 1 Pages 35-45
Keywords acid mine drainage biodegradation methods microorganisms oxidation pollutants pollution remediation sulfides 22, Environmental geology
Abstract Acidic mine drainage (AMD) is a serious environmental problem in mining areas throughout the world. AMD occurs as a result of the natural oxidation of sulfide minerals when they are exposed to oxygen and water during their disposal and storage at the mining areas. Because it includes low pH and high concentrations of dissolved metals and sulphates, AMD can potentially damage to the environment. If the formation of AMD can't be prevented and controlled, it must be collected and treated to remove acidity and reduce the concentration of heavy metals and suspended solids before its release to the environment. Different types of microorganisms in the treatment of AMD can play a very important role in the development and the application of microbiological prevention, control and treatment technologies. The purpose of this article is to give information about the passive biological methods used in the treatment and the control of AMD and the role of microorganisms in these methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-9416 ISBN Medium
Area Expedition Conference
Notes Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD); 2006-075215; References: 58 Turkey (TUR); GeoRef; Turkish Approved no
Call Number (up) CBU @ c.wolke @ 16444 Serial 416
Permanent link to this record