|   | 
Details
   web
Records
Author Carlson, L.; Kumpulainen, S.
Title Retention of harmful elements by ochreous precipitates of iron Type Journal Article
Year 2001 Publication Tutkimusraportti Geologian Tutkimuskeskus Abbreviated Journal
Volume - Issue 154 Pages 30-33
Keywords Surface water quality Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 9) geological abstracts: environmental geology (72 14 2) iron oxide precipitation chemistry sulfate arsenate heavy metal pH water pollution remediation
Abstract The capability of soil fines to fix harmful elements, e.g. heavy metals and arsenic, depends on specific surface area and other characteristics, such as surface charge. In the pH-range typical of natural waters (pH 5,5-7,5), the surfaces of fine-grained silicate particles and manganese oxides are negatively charged; consequently cations, such as heavy metals, fix effectively to them. The iron oxide surfaces are usually positively charged and typically fix anions, such as sulphate and arsenate. Retention of anions is especially extensive to precipitates formed from acid mine drainage (pH 2,5-5,0). For example, precipitates found at Paroistenjarvi mine, Finland, contain more than 70 g/kg of arsenic (dry matter). Adsorbed anions, e.g. sulphate, enhance the capacity of precipitate to fix heavy metal cations in low-pH environments.
Address L. Carlson, Tehtaankatu 25 A 4, Helsinki FIN-00150, Finland liisa.carlson@kolumbus.fi
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0781-4240 ISBN Medium
Area Expedition Conference
Notes Retention of harmful elements by ochreous precipitates of iron; 2392974; Oksidiset rautasaostumat haitallisten aineiden pidattajina. Finland 7; Geobase Approved no
Call Number (up) CBU @ c.wolke @ 17533 Serial 421
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J.
Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal
Volume 17 Issue 4 Pages 99-107
Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim
Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-3629 ISBN Medium
Area Expedition Conference
Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no
Call Number (up) CBU @ c.wolke @ 17555 Serial 67
Permanent link to this record
 

 
Author Rees, B.
Title An overview of passive mine water treatment in Europe Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume 24 Issue 1 Pages 26-28
Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes An overview of passive mine water treatment in Europe; 2007-023994; 1 table Federal Republic of Germany (DEU); GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 5411 Serial 19
Permanent link to this record
 

 
Author Coulton, R.H.; Williams, K.P.
Title Active treatment of mine water; a European perspective Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume 24 Issue 1 Pages 23-26
Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Active treatment of mine water; a European perspective; 2007-023995; illus. incl. 3 tables Federal Republic of Germany (DEU); GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 5412 Serial 20
Permanent link to this record
 

 
Author Rees, B.; Bowell, R.; Dey, M.; Williams, K.
Title Passive treatment; a walk away solution? Type Journal Article
Year 2001 Publication Mining Environmental Management Abbreviated Journal
Volume 9 Issue 2 Pages 7-8
Keywords acid mine drainage; acidification; alkalinity; bacteria; bioremediation; buffers; chemical reactions; cost; effluents; ferric iron; ferrous iron; filtration; ground water; hydrolysis; iron; metals; monitoring; oxidation; permeability; pH; pollution; remediation; substrates; sulfate ion; suspended materials; water management; water pollution; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Passive treatment; a walk away solution?; 2001-050826; References: 3; illus. United Kingdom (GBR); GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 5722 Serial 265
Permanent link to this record