toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Driussi, C. url  openurl
  Title Technological options for waste minimisation in the mining industry Type Journal Article
  Year 2006 Publication J. Cleaner Prod. Abbreviated Journal  
  Volume 14 Issue 8 Pages 682-688  
  Keywords mine water treatment  
  Abstract Just as the application of technology in mining processes can cause pollution, it can also be harnessed to minimise, and sometimes eliminate, mine-related contaminants. Waste minimisation can be achieved through decreased waste production, waste collection, waste recycling, and the neutralisation of pollutants into detoxified forms. This article reviews examples of how technology can be used to minimise air, water, land and noise pollution in the mining industry. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Technological options for waste minimisation in the mining industry; Wos:000237749600002; Times Cited: 1; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16924 Serial 110  
Permanent link to this record
 

 
Author Edraki, M. url  openurl
  Title Post closure management of the Mt Leyshon Gold Mine – Water the integrator Type Journal Article
  Year 2006 Publication Water in Mining 2006, Proceedings Abbreviated Journal  
  Volume Issue Pages 233-242  
  Keywords mine water treatment  
  Abstract Mining at the Mt Leyshon Gold Mine in semi-arid north Queensland stopped in 2002. Newmont Australia has recently initiated a thorough post-closure water management study of the site by revisiting the existing information and conducting new water-related investigations. The focus of this paper. which is the first publication on post-closure environmental management of the site. is an overview of the site water quality in view of the sources and spatial distribution of polluted mine water, and also the performance of cover systems in controlling water flux though mine wastes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Post closure management of the Mt Leyshon Gold Mine – Water the integrator; Isip:000243724400032; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16925 Serial 150  
Permanent link to this record
 

 
Author Jarvis, A.P. url  openurl
  Title Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK Type Journal Article
  Year 2006 Publication Environmental Pollution Abbreviated Journal  
  Volume 143 Issue 2 Pages 261-268  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16928 Serial 109  
Permanent link to this record
 

 
Author Jong, T. url  openurl
  Title Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
  Year 2006 Publication Water Research Abbreviated Journal  
  Volume 40 Issue 13 Pages 2561-2571  
  Keywords mine water treatment  
  Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16929 Serial 108  
Permanent link to this record
 

 
Author Lee, B.H. url  openurl
  Title Constructed wetlands: Treatment of concentrated storm water runoff (Part A) Type Journal Article
  Year 2006 Publication Environmental Engineering Science Abbreviated Journal  
  Volume 23 Issue 2 Pages 320-331  
  Keywords mine water treatment  
  Abstract The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed) and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm runoff. For those six constructed wetland filters receiving heavy metals, an obvious breakthrough of dissolved nickel was recorded after road salting during the first winter. However, a breakthrough of nickel was not observed, since the inflow pH was raised to eight after the first year of operation. High pH facilitated the formation of particulate metal compounds such as nickel hydroxide. During the second year, reduction efficiencies of heavy metal, 5-days at 20 degrees C N-Allylthiourea biochemical oxygen demand (BOD) and suspended solids (SS) improved considerably. Concentrations of BOD were frequently < 20 mg/L. However, concentrations for SS were frequently > 30 mg/L. These are the two international thresholds for secondary wastewater treatment. The BOD removal increased over time due to biomass maturation, and the increase of pH. An analysis of the findings with case-based reasoning can be found in the corresponding follow-up paper (Part B).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed wetlands: Treatment of concentrated storm water runoff (Part A); Wos:000236600700007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16932 Serial 112  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: