|   | 
Details
   web
Records
Author Goulet, R.R.
Title Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance Type Journal Article
Year 2001 Publication Ecological Engineering Abbreviated Journal
Volume 17 Issue 4 Pages 373-384
Keywords mine water treatment
Abstract Surface-flow wetlands are generally considered sinks for Fe and Mn but they may also export and affect the partitioning of these metals. This study was undertaken to evaluate the effect of a young constructed wetland on the retention and transformation of both dissolved and particulate Fe and Mn. Duplicate water samples were collected every three days at the inlet and outlet structures of the Monahan Wetland, Kanata, Ontario, from spring of 1997 to 1999. While on a yearly basis the wetland showed significant retention of che dissolved phase, the retention of total Fe and Mn was poor. There were strong seasonal differences in retention and, during the winter, the wetland was a source. The wetland transformed dissolved into particulate Fe and Mn from spring to fall whereas during the winter, dissolved Fe and Mn were released. Changes in pH, alkalinity and temperature could explain 11% and 40% of the outlet variation in the ratio of dissolved to total Fe and Mn respectively. Furthermore, from spring to late summer, planktonic algal biomass was negatively related to the ratio of dissolved to total Fe and Mn implying a role in Fe and Mn transformations in young wetlands where emergent and submerged vegetation have yet to dominate the system. (C) 2001 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance; Wos:000169881900004; Times Cited: 5; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 17050 Serial 124
Permanent link to this record
 

 
Author Govind, R.
Title Treatment of acid mine drainage using membrane bioreactors Type Journal Article
Year 2001 Publication Bioremediation of Inorganic Compounds Abbreviated Journal
Volume 6 Issue 9 Pages 1-8
Keywords mine water treatment
Abstract Acid mine drainage is a severe water pollution problem attributed to past mining activities. The exposure of the post-mining mineral residuals to water and air results in a series of chemical and biological oxidation reactions, that produce an effluent which is highly acidic and contains high concentrations of various metal sulfates. Several treatment techniques utilizing sulfate reducing bacteria have been proposed in the past; however few of them have been practically applied to treat acid mine drainage. This research deals with membrane reactor studies to treat the acid mine drainage water from Berkeley Pit in Butte, Montana using hydrogen-consuming sulfate reducing bacteria. Eventually, the membrane reactor system can be applied towards the treatment of acid mine drainage to produce usable water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage using membrane bioreactors; Isip:000175098600001; Times Cited: 0; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 17051 Serial 162
Permanent link to this record
 

 
Author Ye, Z.H.
Title Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate Type Journal Article
Year 2001 Publication Journal of Environmental Quality Abbreviated Journal
Volume 30 Issue 4 Pages 1464-1473
Keywords mine water treatment
Abstract A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells I through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year (May 1996-May 1997), and by 94 and 98% in the second year (July 1997-June 1998), respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first year, and 98 and 63% in the second year, respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 em of sediment than in the 5- to 10- or 10- to 15-cm layers, and in Cell I than in Cells 2, 3, and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co, and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is, 2.81, 2.75, and 1.05% for Fe, Co, and Ni, respectively. Considerably higher concentrations of metals were associated with cattail roots than shoots, although Mn was a notable exception.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate; Wos:000174863000040; Times Cited: 15; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 17061 Serial 122
Permanent link to this record
 

 
Author Rajaram, V.
Title Methodology for estimating the costs of treatment of mine drainage Type Journal Article
Year 2001 Publication Proceedings of the Seventeenth International Mining Congress and Exhibition of Turkey Abbreviated Journal
Volume Issue Pages 191-201
Keywords mine water treatment
Abstract Tetra Tech developed worksheets for the U.S. Department of the Interior, Office of Surface Mining (OSM) to allow a consistent, accurate, and rapid method of estimating the costs of long-term treatment of mine drainage at coal mines, in accordance with the Surface Mining Control and Reclamation Act (SMCRA) of 1977. This paper describes the rationale for the worksheets and how they can be used to calculate costs for site-specific conditions. Decision trees for selection of alternative treatments for acidic or alkaline mine drainage are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Methodology for estimating the costs of treatment of mine drainage; Isip:000171428500021; Times Cited: 0; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 17065 Serial 163
Permanent link to this record
 

 
Author Gerth, A.; Kießig, G.
Title Type Book Whole
Year 2001 Publication Abbreviated Journal
Volume Issue Pages 173-180
Keywords mining uranium mining passive treatment Saxony mine water treatment
Abstract Treatment of radioactively-contaminated and metal-laden mine waters and of seepage fiom tailings ponds and waste rock piles is among the key issues facing WISMUT GmbH in their task to remediate the legacy of uranium mining and processing in the Free States of saxony and rhuringia, Federal Republic of Germany. Generally, contaminant loads of feed waters wn aimnisn over time. At a certain level of costs for the removal of one contaminant unit, continued operation of conventional water treatment plants can hardly be justified any longer. As treatment is still required for water protection, there is an urgent need for-the development and implementation of more cost efficient technologies. WISMUT GmbH and BioPlanta GmbH have studied the suitability of helophye species for contaminant removal from mine waters. In a fust step, original waters were used for an in vitro bioassay. The test results allowed for the determination of the effects of biotic and abiotic factors on helophy'tes'tolerancer ange, growth, and uptake capability of radionuclides and metals. Test series were carried out using Phiagmites australis, Carex disticha, Typha latifolia, and Juncus effusus. Relevant cont-aminant components of the mine waters under investigation included uraniunl iron, arsenic, manganese, nickel, and copper. Investigations led to a number of recommendations conceming plant selection for specific water treatment needs. In a second step, based on these results, a constructed wetland was built in l99g as a pilot plant for the treatment of flood waters liom the pöhla-Tellerhäuser mine and went on-line. Relevant constituents of the neutral flood waters include radium, iron, and arsenic. This wetland specifically uses both physico-chemical and microbiological processes as well as contaminant accumulation by helophytes to achieve the treatment objectives. with the pilot plant in operation for three years now, average removal rates achieved are 95 Yo for kon, 86 yo for arsenic, and 75 % for raäium. WISMUT GmbH intends to put a number of other projects of passive/biological mine water treatment into operation before the end of 2001_
Address
Corporate Author Thesis
Publisher Battelle Press Place of Publication (6)5 Editor Leeson, A.
Language Summary Language Original Title
Series Editor Series Title Phytoremediation, wetlands and sediments Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1-57477-115-9 Medium
Area Expedition Conference
Notes Passive/Biological Treatment of Waters contaminated by Uranium Mining; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 4 Tab. Approved no
Call Number (up) CBU @ c.wolke @ 17345 Serial 372
Permanent link to this record