toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S. isbn  openurl
  Title Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage acidification active treatment aquifer vulnerability aquifers bioremediation chemical composition critical load decision-making discharge engineering properties geomembranes ground water impact statements karst hydrology microorganisms mine dewatering mines natural attenuation pollution regulations remediation risk assessment sedimentation sludge solute transport surface water tailings tailings ponds waste management water management water pollution water quality weathering wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Publishers Place of Publication Dordrecht Editor Alloway, B.J.; Trevors, J.T.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine water; hydrology, pollution, remediation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 140200138x; 1202001371 Medium  
  Area Expedition Conference  
  Notes Mine water; hydrology, pollution, remediation; 2003-030514; GeoRef; English; Includes appendix References: 516; illus. Approved no  
  Call Number (up) CBU @ c.wolke @ 16504 Serial 196  
Permanent link to this record
 

 
Author Aube, B.C.; Zinck, J.M. openurl 
  Title Comparison of AMD treatment processes and their impact on sludge characteristics Type Journal Article
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage cost decontamination density discharge geochemistry hydrochemistry leaching lime metals mine dewatering neutralization pH pollution remediation sludge stability tailings toxicity viscosity waste disposal water treatment 22, Environmental geology  
  Abstract Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sudbury Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Mining and the Environment II Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2002-060865; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 10; illus. incl. 6 tables; GeoRef; English Approved no  
  Call Number (up) CBU @ c.wolke @ 16574 Serial 473  
Permanent link to this record
 

 
Author Mitchell, P.; Wheaton, A. isbn  openurl
  Title From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage Type Book Chapter
  Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Bunker Hill Mine cost decontamination Idaho metal ores mines mitigation natural resources pollution reagents recovery Shoshone County Idaho sludge United States zinc ores 22 Environmental geology 27A Economic geology, geology of ore deposits  
  Abstract Acid rock drainage remains the greatest environmental issue faced by the mining sector and as the new millennium approaches, low capital/operating cost treatments remain elusive. Therefore as part of an ongoing process to develop a leading edge, innovative and cost-effective approach, pilot trials were conducted by KEECO in collaboration with the New Bunker Hill Mining Company on a substantial and problematic metal-contaminated acid flow, emanating from underground workings at the Bunker Hill Mine, Idaho. The aims of the work were fourfold. First to assess the capacity of KEECO's unique Silica Micro Encapsulation (SME) reagents and associated dosing systems to cost-effectively decontaminate the acid flow to stringent standards set by the U.S. Environmental Protection Agency (USEPA), where alternative and standard technologies had failed. Second, to demonstrate that treatment using a compact system suitable for underground installation. Third, to demonstrate that the treatment sludge had enhanced chemical stability in absolute terms and relative to standard approaches. Fourth, to examine the potential for resource recovery via sequential precipitation. Although the focus to date has been the development of a cost-effective treatment technology, the latter aim was considered essential in light of the growing pressure on all industrial sectors to develop tools for environmentally sustainable economic growth and the growing demands of stakeholders for improved resource usage and recycling. Two phases of work were undertaken: a laboratory-based scoping exercise followed by installation within the mine workings of a compact reagent delivery/shear mixing unit capable of treating the full flow of 31 L s (super -1) . At a dose rate of 2.0 g L (super -1) (equivalent to a final treated water pH range of 7-9), the SME reagent KB-1 reduced metal concentrations to levels approaching the U.S. Drinking Water Standards, which no other treatment piloted at the site had achieved. Based on the USEPA's Toxicity Characteristic Leaching Procedure, the sludge arising from the treatment was classified as non-hazardous. Operating costs compared favourably with those of lime use, while estimated capital costs were considerably lower due to the compact nature of the reagent delivery system and the rapid settling characteristics of the treatment sediment. Resource recovery was attempted using a two-stage selective precipitation approach. The first stage involved pH adjustment to 5.5 (by addition of 1.5 g L (super -1) of KB-1) to produce a sludge enriched in aluminium, iron and manganese, with lesser amounts of arsenic, nickel, lead and zinc. Further KB-1 addition to a total of 2.1 g L (super -1) generated sludge enriched in zinc (33% by dry weight), demonstrating that resource recovery is theoretically feasible. Further work on downstream processing is required, although it is considered that the most likely route for zinc metal recovery will be high temperature/pressure due to the chemically inert nature of the zinc-rich sediment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage; GeoRef; English; 2000-048642; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 3; illus. incl. 5 tables Approved no  
  Call Number (up) CBU @ c.wolke @ 16593 Serial 296  
Permanent link to this record
 

 
Author Okuda, T.; Ema, S.; Ishizaki, C.; Fujimoto, J. openurl 
  Title Mine drainage treatment and ferrite sludge application Type Journal Article
  Year 1991 Publication NEC Technical Journal Abbreviated Journal  
  Volume 44 Issue 5 Pages 4-16  
  Keywords ferrite applications mining water treatment mine drainage treatment waste water treatment ions metal recovery catalysts environmental problems solution ferrite sludge application iron oxidation bacteria ferrite formation process mine drainage Matsuo Mine magnetic marking materials magnetic fluid metal separation semiactive magnetic damper batteries fish gathering cement tracer Electrical and Electronic Engineering Manufacturing and Production  
  Abstract The `ferrite process' is an excellent method for treating waste water containing iron and arsenic, but cannot be directly applied to mine drainage where silicon and aluminum ions are present, because they strongly inhibit ferrite formation. As a result of the development of related technologies such as the elimination of silicon, the concentration of iron, and the oxidation of ferrous ions using iron-oxidation bacteria, a new ferrite formation process has been developed and applied to the mine drainage of the Matsuo Mine. The paper discusses the application of the ferrite sludge to magnetic marking materials, magnetic fluid for metal separation and recovery, and the semiactive magnetic damper is described. The related technologies which will be expected to play an important role in solving the environmental problems are also described. These technologies will change the ferrite sludge to beneficial materials, which can be used for carbon dioxide decomposing catalysts, reuse of dry batteries, fish gathering blocks, and cement tracer for ground improvement  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0285-4139 ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment and ferrite sludge application; 3991072; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number (up) CBU @ c.wolke @ 16787 Serial 279  
Permanent link to this record
 

 
Author Heal, K.V.; Salt, C.A. url  openurl
  Title Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil Type Journal Article
  Year 1999 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 39 Issue 12 Pages 141-148  
  Keywords Acid mine drainage constructed wetland mine waste reclamation sewage sludge  
  Abstract Ironstone mine spoil leaves a legacy of land contamination and diffuse water pollution with acidic, metal-rich drainage. Reclamation for woodland may exacerbate water pollution due to spoil amendment and disturbance. Constructed wetland systems (CWS) are increasingly used for treating acid mine drainage but their performance is poorly understood. A combined approach was used to reclaim the Benhar ironstone spoil heap in Central Scotland. Trees have been planted in spoil treated with dried pelleted sewage sludge, limestone and peat. Spoil drainage (pH 2.7, 247 mg l-1 total Fe) passes through a CWS. Spoil throughflow, surface water chemistry and CWS performance were monitored for 12 months after reclamation. Acidity, Fe, Mn and Al concentrations declined in throughflow after reclamation, although this effect was not uniform. Soluble reactive P has been mobilised from the sewage sludge in residual areas of spoil acidity, but losses of other nutrients were short-lived. The CWS removes on average 33 % and 20-40 % of acidity and metal inputs but removal rates decrease in winter. Spoil reclamation has been successful in enabling vegetation establishment but has also increased Fe and Mn concentrations in surface drainage from the site, even after passage through the CWS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil; Science Direct Approved no  
  Call Number (up) CBU @ c.wolke @ 17272 Serial 45  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: