toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Younger, P.L.; Cornford, C. openurl 
  Title Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Africa Bolivia case studies Cornwall England cost decision-making decontamination Durham England England Europe geochemistry Great Britain Hlobane Colliery hydrology Kernow England KwaZulu-Natal South Africa metals Milluni Mine mine drainage monitoring pollutants pollution Quaking Houses England remediation South Africa South America South Crofty Mine South-West England Southern Africa United Kingdom water treatment Western Europe Wheal Jane Mine 22, Environmental geology  
  Abstract Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.  
  Address  
  Corporate Author Thesis  
  Publisher Proceedings of the Ussher Society, vol.10, Part 3 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 40th annual meeting of the Ussher Society Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2004-019557; 40th annual meeting of the Ussher Society, Saint Austell, United Kingdom, Jan. 3-4, 2002 Scott Simpson lecture References: 39; illus. incl. 3 tables; GeoRef; English Approved no  
  Call Number (up) CBU @ c.wolke @ 16506 Serial 194  
Permanent link to this record
 

 
Author Banks, S.B.; Banks, D. url  openurl
  Title Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK Type Book Chapter
  Year 2001 Publication Geoenvironmental engineering Engineering Geology Abbreviated Journal  
  Volume Issue Pages 31-37  
  Keywords abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology  
  Abstract The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication 60 Editor Yong, R.N.; Thomas, H.R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables Approved no  
  Call Number (up) CBU @ c.wolke @ 16515 Serial 31  
Permanent link to this record
 

 
Author Aube, B.C.; Zinck, J.M. openurl 
  Title Comparison of AMD treatment processes and their impact on sludge characteristics Type Journal Article
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage cost decontamination density discharge geochemistry hydrochemistry leaching lime metals mine dewatering neutralization pH pollution remediation sludge stability tailings toxicity viscosity waste disposal water treatment 22, Environmental geology  
  Abstract Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sudbury Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Mining and the Environment II Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2002-060865; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 10; illus. incl. 6 tables; GeoRef; English Approved no  
  Call Number (up) CBU @ c.wolke @ 16574 Serial 473  
Permanent link to this record
 

 
Author Berthelot, D.; Haggis, M. isbn  openurl
  Title Application of remote monitoring and data management systems to environmental management of tailings facilities Type Book Chapter
  Year 1999 Publication Sudbury '99; Mining and the environment II; conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Algoma District Ontario applications Canada cost data management data processing Eastern Canada efficiency effluents Elliot Lake Ontario environmental analysis environmental management information management land management mining monitoring Ontario planning pollution remediation solid waste Stanleigh Mine tailings technology waste disposal 22, Environmental geology  
  Abstract The mining industry has made tremendous strides in the last 20 years in the prevention and control of acid mine drainage. However, there remain a number of circumstances where the long-term operation, care and maintenance of tailings management facilities will be required. The application of progressive environmental technologies and management systems is key to cost control and environmental liability management at these sites. Mine Waste Management Inc. currently operates Rio Algom Limited's five effluent treatment plants and seven waste management areas in the Elliot Lake, Ontario region using a Remote Plant Monitoring and Control Network (RPMCN). This system, based on Intellutions's “Fix 32” technology, enables the monitoring and control of these plants from a centralized location thus reducing labour costs while providing 24-hour surveillance. Scheduling, auditing and reporting of plant operating and environmental monitoring programs are integrated and controlled using the Envista (super TM) environmental information management system. Proper application of these technologies and management systems facilitates delivery of cost-effective environmental monitoring, and care and maintenance programs at these sites and provides tools to demonstrate compliance with all environmental performance criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes Application of remote monitoring and data management systems to environmental management of tailings facilities; GeoRef; English; 2002-060870; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 2; illus. incl. sketch map Approved no  
  Call Number (up) CBU @ c.wolke @ 16575 Serial 449  
Permanent link to this record
 

 
Author Mitchell, P.; Wheaton, A. isbn  openurl
  Title From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage Type Book Chapter
  Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Bunker Hill Mine cost decontamination Idaho metal ores mines mitigation natural resources pollution reagents recovery Shoshone County Idaho sludge United States zinc ores 22 Environmental geology 27A Economic geology, geology of ore deposits  
  Abstract Acid rock drainage remains the greatest environmental issue faced by the mining sector and as the new millennium approaches, low capital/operating cost treatments remain elusive. Therefore as part of an ongoing process to develop a leading edge, innovative and cost-effective approach, pilot trials were conducted by KEECO in collaboration with the New Bunker Hill Mining Company on a substantial and problematic metal-contaminated acid flow, emanating from underground workings at the Bunker Hill Mine, Idaho. The aims of the work were fourfold. First to assess the capacity of KEECO's unique Silica Micro Encapsulation (SME) reagents and associated dosing systems to cost-effectively decontaminate the acid flow to stringent standards set by the U.S. Environmental Protection Agency (USEPA), where alternative and standard technologies had failed. Second, to demonstrate that treatment using a compact system suitable for underground installation. Third, to demonstrate that the treatment sludge had enhanced chemical stability in absolute terms and relative to standard approaches. Fourth, to examine the potential for resource recovery via sequential precipitation. Although the focus to date has been the development of a cost-effective treatment technology, the latter aim was considered essential in light of the growing pressure on all industrial sectors to develop tools for environmentally sustainable economic growth and the growing demands of stakeholders for improved resource usage and recycling. Two phases of work were undertaken: a laboratory-based scoping exercise followed by installation within the mine workings of a compact reagent delivery/shear mixing unit capable of treating the full flow of 31 L s (super -1) . At a dose rate of 2.0 g L (super -1) (equivalent to a final treated water pH range of 7-9), the SME reagent KB-1 reduced metal concentrations to levels approaching the U.S. Drinking Water Standards, which no other treatment piloted at the site had achieved. Based on the USEPA's Toxicity Characteristic Leaching Procedure, the sludge arising from the treatment was classified as non-hazardous. Operating costs compared favourably with those of lime use, while estimated capital costs were considerably lower due to the compact nature of the reagent delivery system and the rapid settling characteristics of the treatment sediment. Resource recovery was attempted using a two-stage selective precipitation approach. The first stage involved pH adjustment to 5.5 (by addition of 1.5 g L (super -1) of KB-1) to produce a sludge enriched in aluminium, iron and manganese, with lesser amounts of arsenic, nickel, lead and zinc. Further KB-1 addition to a total of 2.1 g L (super -1) generated sludge enriched in zinc (33% by dry weight), demonstrating that resource recovery is theoretically feasible. Further work on downstream processing is required, although it is considered that the most likely route for zinc metal recovery will be high temperature/pressure due to the chemically inert nature of the zinc-rich sediment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage; GeoRef; English; 2000-048642; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 3; illus. incl. 5 tables Approved no  
  Call Number (up) CBU @ c.wolke @ 16593 Serial 296  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: