|   | 
Details
   web
Records
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B.
Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
Year 1997 Publication Environ. Geol. Abbreviated Journal
Volume 32 Issue 3 Pages 157-174
Keywords mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage
Abstract Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.
Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Expedition Conference
Notes Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no
Call Number (up) CBU @ c.wolke @ 10620 Serial 18
Permanent link to this record
 

 
Author Becker, G.; Wade, S.; Riggins, J.D.; Cullen, T.B.; Venn, C.; Hallen, C.P.
Title Effect of Bast Mine treatment discharge on Big Mine Run AMD and Mahanoy Creek in the Western Middle Anthracite Field of Pennsylvania Type Journal Article
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords abandoned mines acid mine drainage anthracite Ashland Pennsylvania Bast Mine Big Mine Run coal coal fields coal mines Columbia County Pennsylvania discharge geochemistry hydrochemistry hydrology Mahanoy Creek mines Northumberland County Pennsylvania Pennsylvania pollution rivers and streams Schuylkill County Pennsylvania sedimentary rocks surface water United States water quality water treatment Western Middle Anthracite Field 22 Environmental geology 02A General geochemistry
Abstract The Bast Mine (reopened in 2001) and Big Mine are two anthracite coal mines near Ashland, PA, that were abandoned in the 1930's and that are now causing drastic and opposite effects on the water quality of the streams originating from them. To quantify these effects, multiple samples were taken at 5 different sites: 3 along Big Mine Run and 2 from Mahanoy Creek (1 upstream and 1 downstream of the confluence with Big Mine Run). At each site, one set of the samples was treated with nitric acid for metals survey, one set was acidified with sulfuric acid for nitrate preservation, one set was filtered for sulfate and phosphate tests, and one set was unaltered. Measurements of pH, TDS, dissolved oxygen, and temperature were made in the field. Alkalinity, acidity, hardness, nitrates, orthophosphates and sulfates were analyzed using Hach procedures. Selected metals (Fe, Ni, Mg, Ca, Cu, Zn, Hg, Pb) were analyzed utilizing flame atomic absorption spectroscopy. Drainage from the Bast Mine is actively treated with hydrated lime before the water is piped down to Big Mine Run. pH and alkalinity values were much higher at the outflow compared to those in the water with which it merged. The two waters could be visibly distinguished some distance downstream. pH values decreased, sulfate and dissolved iron increased and alkalinity was reduced to zero until the confluence with Mahanoy Creek. The high alkalinity, turbidity, TDS and calcium values in Mahanoy Creek were somewhat reduced downstream of the confluence with the much lower discharge Big Mine Run.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, Northeastern Section, 40th annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2006-042616; Geological Society of America, Northeastern Section, 40th annual meeting, Saratoga Springs, NY, United States, March 14-16, 2005; GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 16455 Serial 459
Permanent link to this record
 

 
Author Bolzicco, J.; Carrera, J.; Ayora, C.
Title Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage Type Journal Article
Year 2004 Publication Revista Latino-Americana de Hidrogeologia Abbreviated Journal
Volume 4 Issue Pages 27-34
Keywords abandoned mines acid mine drainage Agrio River Andalusia Spain aquifers Aznalcollar Mine Cenozoic chemical composition chemical ratios copper ores dams disposal barriers drainage basins Europe geochemistry ground water Guadiamar River hydrochemistry Iberian Peninsula Iberian pyrite belt igneous rocks metal ores mineral composition mines mining Miocene Neogene permeability pH pollution reactive barriers remediation sedimentary rocks sediments Seville Spain Southern Europe Spain surface water tailings Tertiary volcanic rocks waste disposal water treatment zinc ores 22, Environmental geology
Abstract As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage; 2004-072864; References: 7; illus. incl. geol. sketch map Brazil (BRA); GeoRef; Spanish Approved no
Call Number (up) CBU @ c.wolke @ 16471 Serial 443
Permanent link to this record
 

 
Author Younger, P.L.; Cornford, C.
Title Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice Type Journal Article
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords Africa Bolivia case studies Cornwall England cost decision-making decontamination Durham England England Europe geochemistry Great Britain Hlobane Colliery hydrology Kernow England KwaZulu-Natal South Africa metals Milluni Mine mine drainage monitoring pollutants pollution Quaking Houses England remediation South Africa South America South Crofty Mine South-West England Southern Africa United Kingdom water treatment Western Europe Wheal Jane Mine 22, Environmental geology
Abstract Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.
Address
Corporate Author Thesis
Publisher Proceedings of the Ussher Society, vol.10, Part 3 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title 40th annual meeting of the Ussher Society Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2004-019557; 40th annual meeting of the Ussher Society, Saint Austell, United Kingdom, Jan. 3-4, 2002 Scott Simpson lecture References: 39; illus. incl. 3 tables; GeoRef; English Approved no
Call Number (up) CBU @ c.wolke @ 16506 Serial 194
Permanent link to this record
 

 
Author Benzaazoua, M.; Bussiere, B.
Title Desulphurization of tailings with low neutralizing potential; kinetic study and flotation modeling Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage chemical properties chemical reactions environmental analysis environmental effects experimental studies flotation geochemistry kinetics laboratory studies mathematical models neutralization pH pollution sulfur tailings 22 Environmental geology 02A General geochemistry
Abstract Environmental desulphurization is an attractive alternative for acid generating tailings management as demonstrated during the last few years. In fact, such process placed at the end of the primary treatment circuit allows to reduce greatly the amount of problematic tailings by concentrating the sulphidic fraction. Moreover, the desulphurized tailings (non-acid generating) have the geotechnical and environmental properties for being used as fine material in a cover with capillary barrier effects. To produce desulphurized tailings, non selective froth flotation is the most adapted method as shown in many previous works. Desulphurization level is fixed by tailings sulphur content (or sulphide content) and neutralization potential NP. The final residue should have enough NP to compensate for his acid generating potential AP. In this paper, the authors present the results of laboratory tests conducted in Denver cells for studying the sulphide flotation kinetics of four mine tailings which are characterized by a weak neutralization potential (under 37 kg CaCO (sub 3) /t). Tailings 1, 2, 3 and 4 contain respectively 5.27, 10, 4.25 and 16.9 sulphur Wt. %. Tailings 1 and 2 are cyanide free and are well floated at pH around 11 by using amyl xanthate as collector. Collector dosage was optimized for these tailings and the results show that Tailing 2 need more collector. However, Tailings 3 and 4, which come from a gold cyanidation process, could not provide good sulphide recovery with xanthate collector because of the pyrite depression. To overcome this problem, amine acetate was used successfully but induces important entrainment. The consumption of this collector was also optimized. The results of kinetic tests and collector dosage were combined and modeled to establish relationships which allow to estimate the desulphurization performances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Desulphurization of tailings with low neutralizing potential; kinetic study and flotation modeling; GeoRef; English; 2002-060841; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 26; illus. incl. 5 tables Approved no
Call Number (up) CBU @ c.wolke @ 16572 Serial 452
Permanent link to this record